Session 12b9

But, Isn’t That Cheating?

Laurie Williams
University of Utah Computer Science
50 S. Central Campus #3190
Salt Lake City, UT 84112
Phone: (801) 585-3736
Fax: (801) 581-5843
lwilliam@cs.utah.edu

“Traditionally, collaboration in the classroom . . . has been taboo, condemned as a form of cheating. Yet
what we discover . . . is that collaboration can only make our classrooms happier and more productive [1].”

Anecdotal evidence from several sources, primarily in
industry, indicates that two programmers working
collaboratively on the same design, algorithm, code, or test
perform substantially better than the two working alone. In
this technique, often called “pair programming,” one person
is the “driver” and has control of the pencil/mouse/keyboard
and is writing the design or code. The other person,
continuously and actively observes the work of the other —
watching for defects, thinking of alternatives, looking up
resources, and considering strategic implications of the
work. The Extreme Programming (XP) methodology,
developed primarily by Smalitalk code developer and
consultant Kent Beck, attributes great success to the use of
“pair programming.” Results [2] demonstrate that the two
programmers work together more than twice as fast and
think of more than twice as many solutions to a problem as
two working alone, while attaining higher defect prevention
and defect removal leading to a higher quality product.

Two other studies support the use of collaborative
programming. Larry Constantine, a programmer, consultant,
and magazine columnist reports on observing “Dynamic
Duos” during a visit to P. J. Plaugher’s software company,
Whitesmiths, Ltd, providing anecdotal support for
collaborative programming. He immediately noticed that at
each terminal were two programmers working on the same
code. He reports, “Having adopted this approach, they were
delivering finished and tested code faster than ever . . . The
code that came out the back of the two programmer
terminals was nearly 100% bug free . . . it was better code,
tighter and more efficient, having benefited from the
thinking of two bright minds and the steady dialogue
between two trusted terminal-mates . . . Two programmers
in tandem is not redundancy; it’s a direct route to greater
efficiency and better quality.”[3]

Additionally, an experiment studied 15 full-time,
experienced programmers working for 45 minutes on a
challenging problem, important to their organization, in their
own environment, and with their own equipment. Five
worked individually, ten worked collaboratively in five
pairs. Conditions and materials used were the same for both

0-7803-5643-8/99/$10.00 © 1999 IEEE

the experimental (team) and control (individual) groups.
This study provided statistically significant results, using a
two-sided t-test. “To the surprise of the managers and
participants, all the teams outperformed the individual
programmers, enjoyed the problem-solving process more,
and had greater confidence in their solutions.” The groups
completed the task 40% more quickly and effectively by
producing better algorithms and code in less time. The
majority of the programmers were skeptical of the value of
collaboration in working on the same problem and thought it
would not be an enjoyable process. However, results show
collaboration improved both their performance and their
enjoyment of the problem solving process. [4].

But, how about in our classrooms? Can university
Computer Science students also benefit from collaborative
programming? Larry Constantine, who’s observation of P.
J. Plaugher’s software company were reported above, noted
that “. . . for language learning, there seems to be an
optimum number of students per terminal. It’s not one . . .
one student working alone generally learns the language
significantly more slowly than when paired up with a partner
[3].” A class I taught at the University of Utah this summer
set out to study pair programming in an educational setting.

The class, an Active Server Pages (ASP) web

~ programming class, consisted of 20 juniors and seniors. The
students were very familiar with programming, but not with

the web programming languages learned and used in the
class. Each student was paired with another student to work
with for the entire semester. Tests were, however, taken
individually. They understood that the idea was not to break
the class project into two pieces and integrate later. The idea
was to work together (almost) all the time on one product.
These requirements were stated in the course announcement
and were re-stated at the start of the class. Most skeptically,
but enthusiastically, embarked on making the transition from
solo to collaborative programming. (Two students enrolled
although that had an excess of personal commitments,
making collaborative programming, which primarily needed
to be done in the university computer lab, a large
inconvenience to them. These students never open to the

November 10 - 13, 1999 San Juan, Puerto Rico

29" ASEE/IEEE Frontiers in Education Conference
12b9-26

benefits of collaborative programming.) The students were
surveyed at the end of their class on their view of
collaborative programming;:

. 84% of the class agreed with the statement
“I enjoyed doing the assignments more because of pair
programming”

. 84% of the class agreed with the statement
“I learned ASP faster and better because I was always
working with a partner”

. 95% of the class agreed with the statement
“I was more confident in our assignments because we
pair programmed”’

. They felt they were much more productive
when working collaboratively. The main three reasons
were:

o When they met with their partner they
both worked very intensively -- each kept the other
on task (no reading emails or surfing the web) and
was highly motivated to complete the task at hand

o Having a constant observer watching over
their shoulder served as the most efficient of all
defect removal methods

o When one partner did not
know/understand something, the other almost
always did. Between the two of them, they could
tackle anything.

At a commuter school, such as the University of Utah,
one drawback to collaborative programming is the added
logistics of getting together with their partner. One student
admitted that they really preferred to write programs at home
while watching TV. However, the consensus of the class
was very, very positive about the technique.

Programmers, however, have generally Dbeen
conditioned to performing solitary work. Making the
transition to pair programming involves breaking down
some personal barriers beginning with the understanding that
talking is not cheating. First, the programmers must
understand that the benefits of intercommunication outweigh
their common (perhaps innate) preference for working alone
and undisturbed. Secondly, they must confidently share
their work, accepting instruction and suggestions for
improvement in order to advance their own skills and the
product at hand. They must display humility in
understanding that they are not infallible and that their
partner has the ability to make improvements in what they
do. Lastly, a pair programmer must accept ownership of
their partner’s work and, therefore, be willing to

constructively ~ express criticism and suggested
improvements.
The transition to pair programming takes the

conditioned solitary programmer out of their “comfort
zone.” The use of the technique may also take the instructor
out of their “comfort zone” because the need to deal with
additional issues such as one partner ending up with all the
work, how to distribute grades, etc. The technique deserves

0-7803-5643-8/99/$10.00 © 1999 IEEE

Session 12b9

further research. However, it has the potential of changing
how programming classes are taught in order to benefit the
students’ learning experience.

Bibliography

1. Bennis, W., Biederman, Patricia Ward, Organizing
Genius: The Secrets of Creative Collaboration. 1997:
Addison-Wesley Publishing Company, Inc.

2. Beck, K., Cunningham, Ward, Extreme Programming
Roadmap, . 1999,
http://c2.com/cgi/wiki?ExtremeProgramming,

3. Constantine, L.L., Constantine on Peopleware. Yourdon
Press Computing Series, ed. E. Yourdon. 1995,
Englewood Cliffs, NJ: Yourdon Press.

4. Nosek, I.T., The Case for Collaborative Programming,
in Communications of the ACM. 1998. p. 105-108.

November 10 - 13, 1999 San Juan, Puerto Rico

29" ASEE/IEEE Frontiers in Education Conference
12b9-27

