
Scrum + Engineering Practices: Experiences of Three Microsoft Teams

Laurie Williams
North Carolina State University

Raleigh, NC 27695, USA
williams@csc.ncsu.edu

Gabe Brown, Adam Meltzer, Nachiappan Nagappan
Microsoft Corporation

Redmond, WA 98052, USA
{gabeb, ameltzer, nachin}@microsoft.com

Abstract - The Scrum methodology is an agile software
development process that works as a project management
wrapper around existing engineering practices to iteratively
and incrementally develop software. With Scrum, for a
developer to receive credit for his or her work, he or she must
demonstrate the new functionality provided by a feature at the
end of each short iteration during an iteration review session.
Such a short-term focus without the checks and balances of
sound engineering practices may lead a team to neglect quality.
In this paper we present the experiences of three teams at
Microsoft using Scrum with an additional nine sound
engineering practices. Our results indicate that these teams
were able to improve quality, productivity, and estimation
accuracy through the combination of Scrum and nine
engineering practices.

Keywords - Agile software development, Scrum

I. INTRODUCTION

Scrum [16, 29] is the most often used [6, 30, 31] agile
[10] software development methodology among teams that
utilize an agile methodology. A large-scale survey [31]
deployed in the software engineering industry from
June/July 2008 received 3061 respondents from 80 different
countries. For the question “Which Agile methodology do
to you closely follow” 49% of the respondents mentioned
Scrum and an additional 29% mentioned Scrum with
Extreme Programming. Additionally, a survey of 10% of
all engineers at Microsoft, indicated that more than 60% of
the engineers use Scrum (Figure 2) [6]. Scrum provides a
project management structure to a team. However, the
Scrum methodology does not prescribe the engineering
practices a team should use, purportedly to give
organizations as much flexibility as possible in choosing
their engineering practices.

With Scrum, gone are the days of a software developer
reporting to the project manager that a new feature is 80%
complete. Instead, in a Scrum environment, credit is “all or
nothing” whereby a feature that is 99% done is considered
“not done.” For the developer to receive credit for his or her
work, he or she must demonstrate the new functionality
provided by a feature at the end of each short iteration
during an iteration review session. Developers, testers, the
project managers, the product owner/manager, and others
attend this iteration review session. The expectations for
demonstrating all planned features at the end of each

iteration are high as the team works to meet its iteration
goal.

This short-term focus of iterations coupled with a lack
of prescribed engineering practices may lead to trouble.
“Flaccid Scrum1” is a term coined by Martin Fowler to refer
to teams that utilize only Scrum’s project management
practices. Progress eventually slows for Flaccid Scrum
teams, according to Fowler, because the team has not paid
enough attention to the quality of the code produced during
each iteration. In some cases, only the easiest scenario of a
feature (often referred to as the “happy path”) is
demonstrated at the end of the iteration. This “happy path”
may be formally specified as the acceptance criteria for the
feature. The feature can then be considered to be “done”,
with the development team getting credit for the feature.
Focus then turns to a new set of commitments to deliver
features for the next iteration, even if only the “happy path”
of prior features has been done.

The Scrum methodology, however, may provide a solid
project management framework for a team that also utilizes
sound engineering practices. In this paper, we share the
experiences and quantitative productivity and quality results
of three Microsoft teams who utilized a Scrum-based
software development methodology augmented with nine
engineering practices recommended by the Microsoft
Engineering Excellence group that takes care of
companywide process initiatives.

Software engineering research can aid practitioners in
their technology and/or process choices. Practitioners who
read this paper will gain an understanding of the need to add
engineering practices to a Scrum process to prevent Flaccid
Scrum.

The rest of this paper is structured as follows. We
explain Scrum and provide background in Sections 2 and 3.
We provide the motivation for our paper in Section 4. In
Section 5, we describe the practices adopted by the team.
We then provide the results of the teams in Section 6 and
limitations of our study in Section 7. We summarize the
study in Section 8.

II. SCRUM
The Scrum methodology is an agile software

development process that works as a wrapper with existing
engineering practices to iteratively and incrementally

1 http://www.martinfowler.com/bliki/FlaccidScrum.html
2 http://www.sei.cmu.edu/cmmi/
3 http://www.nunit.org/index.php
4 http://junit.org/

develop software. Scrum is composed of the following
project management practices:

• The Product Owner creates the requirements, prioritizes
them, and documents them in the Product Backlog
during Release Planning. In Scrum, requirements are
called features.

• Scrum teams work in short iterations. When Scrum
was first defined [16, 29], iterations were 30-days long.
More recently Scrum teams often use even shorter
iterations, such as two-week iterations. In Scrum, the
current iteration is called the Sprint.

• A Sprint Planning Meeting is held with the
development team, testers, management, the project
manager, and the Product Owner. In the Sprint
Planning Meeting, this group chooses which features
(which are most often user-visible, user valued, and
able to be implemented within one iteration) from the
product backlog are to be included in the next iteration,
driven by highest business value and risk and the
capacity of the team.

• Once the Sprint begins, features cannot be added to the
Sprint.

• Short, 10-15 minute Daily Scrum meetings are held.
While others (such as managers) may attend these
meetings, only the developers and testers and the Scrum
Master (the name given to the project manager in
Scrum) can speak. Each team member answers the
following questions:

o What have you done since the last Daily Scrum?
o What will you do between now and the next Daily

Scrum?
o What is getting in your way of doing work?

• At the end of a Sprint, a Sprint Review takes place to
review progress and to demonstrate completed features
to the Product Owner, management, users, and the team
members.

• After the Sprint Review, the team conducts a
Retrospective Meeting. In the Retrospective Meeting,
the team discusses what went well in the last Sprint and
how they might improve their processes for the next
Sprint.

III. BACKGROUND AND RELATED WORK
In this section, we provide related work on the Scrum

agile software development methodology. We also discuss
case study research.

A. Scrum Research
A myriad of qualitative experience reports about the

Scrum software development methodology have been
published. However, few studies have been conducted on
the Scrum that report quantitative results, as ours does. In

this section, we summarize information available in the
literature about the use of Scrum by industrial software
development teams whereby the papers provided details
beyond qualitative experience reports. A pattern among the
published studies is that the successful Scrum teams also
utilized proven engineering practices.

Tain, a Swedish gaming company, adopted Scrum and
Extreme Programming (XP) engineering practices to
develop an online poker game [21]. The team delivered a
stable, scalable product on schedule. During this time, the
team also was reduced in size by half and those that
remained worked less overtime to produce more business
value than previously. The engineering practices the team
enumerated as critical to their success are the following:
continuous integration, refactoring, and test-driven
development.

A development team for an Internet portal utilized the
Scrum methodology [12]. Initially, the short term focus of
Scrum caused this team to ignore the use of some best
engineering practices, leading to “cumulative and often
irreversible” problems. Early in the development cycle, the
team established source control, coding standards, processes
for code reviews and check-ins, and informal rules for
design discussions and team meetings. However, the team
did not initially establish an automated build system, a unit
test framework, or a practice of creating automated quality
assurance tests. The eventual implementation of these
practices aided the team in successfully implementing a
higher quality product by a team with improved morale.

Two teams at Systematic utilized a Scrum-based
process [18]. Systematic is an independent software and
systems company focused on complex and critical
information technology solutions. Systematic often
produces products that are mission critical with high
demands for reliability, safety, accuracy, and usability. In
2005, Systematic was rated a Capability Maturity Model –
Integrated (CMM-I)2 Level 5 company, an indication of its
use of engineering best practices. Through the use of Scrum,
Systematic estimates that it doubled its productivity and cut
defects by 40%.

B. Case Study Research
The experiences shared in this paper can be classified

as case study research. Case studies can be viewed as
“research in the typical” [13, 19]. As opposed to formal
experiments, which often have a narrow focus and an
emphasis on controlling context variables, case studies in
software engineering test theories and collect data through
observation of a project in an unmodified setting [34].
However, because the corporate, team, and project
characteristics are unique to each case study, comparisons
and generalizations of case study results are difficult and are
subject to questions of internal validity [20]. Nonetheless,
case studies are valuable because they involve factors that

2 http://www.sei.cmu.edu/cmmi/

staged experiments generally do not exhibit, such as scale,
complexity, unpredictability, and dynamism [27]. Case
studies are particularly important for industrial evaluation of
software engineering methods and tools [19]. Researchers
become more confident in a theory when similar findings
emerge in different contexts [19]. By recording the context
variables of multiple case studies and/or experiments,
researchers can build evidence through a family of
experiments. Replication of case studies addresses threats
to experimental validity [2].

IV. MICROSOFT TEAM AND PROCESS
In this section we provide information on the three

Microsoft teams included in our study that utilized a Scrum-
based software development methodology plus engineering
practices. We then discuss the software development
process used by the teams.

A. Research Methodology
The second and third authors can be considered action

researchers. They have participated as software engineers
on the three teams. The first author obtained information
about the teams’ experiences by interviewing the second
author using pre-prepared questions, which were intertwined
with opportunistic follow-on questions based upon his
answers. One interview was conducted on the phone and
the second in person. Both interviews were approximately
one hour in duration. The fourth author participated in the
interviews. He also had numerous informal conversations
with the two software engineers on the teams. The second
and third authors provided quantitative data, which was
interpreted and analyzed by the first and fourth authors.

B. Team Demographics and Context
Table I provides an overview of the context factors of

the three teams. The context factors were motivated based
upon those specified in the Extreme Programming
Evaluation Framework (XP-EF) [33]. We do not provide
information about the exact Microsoft products the teams
implemented to enable us to share more information about
the team’s results. The domain of the each of the products
is provided in the table and ranges from infrastructure to test
infrastructure to mobile web applications. In all cases, the
teams were working on the first release of their products in
either C# or C++. The teams produced between 9 and 31
thousand lines of implementation code during a period of
between 11 and 18 months long.

Teams A and B were small teams of between three and
five members. Team C was larger with 19 members.
Teams B was co-located teams while Teams A and C were
distributed between the US and China, challenging the usual
face-to-face communication advocated in the Agile
Manifesto [5]. Other context factors presented in Table I
will be discussed in Section 5.

C. Scrum-based Process Used by Teams
The three teams utilized a Scrum-based software

development process and added nine additional engineering
practices. These nine practices are Microsoft Engineering
Excellence Best Practices. Microsoft Engineering
Excellence is an organization responsible for supporting
Microsoft's engineering community by providing the
engineers with learning and development opportunities, and
with discovering and propagating engineering best practices
across the company and into the information technology
(IT) ecosystem.

This sub-section provides information on the software
development methodology used by the teams.
1) Basic Scrum

The teams utilized the basic practices of Scrum laid out
in Section II. All teams began with a four-week iteration.
Team A then transitioned to a two-week iterations. Team A
team found estimating and planning for a two-week period
easier than planning for a four week period. They also
found the move to a two-week iteration allowed them to
respond faster to changing business requirements reduced
risk because the team was able to address issues more
rapidly through more frequent iterations.

The teams performed “just-in-time” design of features
before or during the iteration in which the feature was to be
developed. The form of the design was often class diagrams
and annotations on interactions with other major
components. Team A team members in Shanghai
sometimes created a prototype (called a “spike” among agile
software developers) of larger features or those with
significant unknowns before the feature was accepted into a
Sprint. The purpose of the prototype was to gain knowledge
about the feature prior to accepting the feature into a Sprint.
Only when enough knowledge was available for the feature
would it be considered ready for a Sprint. Such delaying of
stories until adequate information is available was also done
by the Systematic team discussed in Section III [18].

The teams only held the Daily Scrum three times per week
in Redmond, Washington, USA. Subsequently, a Redmond
team member would follow up with a call to their Chinese
colleagues. The teams conducted retrospective meetings at
the end of every Sprint.

2) Planning Poker
The teams used Planning Poker to estimate the person-

hours required to complete functionality within an iteration.
In recent years, some agile software development teams
have estimated the effort needed to complete the
requirements chosen to be implemented in an Sprint and/or
in a release via a Wideband Delphi [8] practice commonly
called Planning Poker [11, 14]. Several reports on the use of
Planning Poker are found in the literature. One Norwegian
industrial team “immediately took a liking to the new
estimation process” [15] of Planning Poker, and the
technique was “very well received.” Another Norwegian

TABLE I: MICROSOFT TEAM CONTEXT FACTORS

 Team A Team B Team C
Project Management
Type Scrum Scrum Scrum
Team Size 4 3 19

Team Location
Redmond +
Shanghai Redmond Redmond + Beijing

Experience > 10 years 1 1 1
Experience 6-10 years 2 0 10
Experience < 5 years 1 2 8
Domain Expertise Medium Medium Medium/High
Language Expertise High Medium High
Program Manager
Expertise Low Low Medium/High
Programming Lang. C# C# C++
Team Location Distributed Local Distributed
Domain Infrastructure Test Infrastructure Mobile Web
Version/Legacy 1st Release 1st Release 1st Release
Source LoC 24,952 8,826 31,399
Test LoC 20,912 4,031 26,283
Test LoC / Source LoC 0.84 0.46 0.84
% of Code Coverage
(unit-tests) 82% 53% N/A
Development Time 14 months 11 months 18 months
Legacy Code no no no

Test Run Frequency
Every check-

in/daily
Every check-

in/daily Every check-in/daily
Actual Defects
(Sev 1,2,3,4) 14 P1, 56 P2 76 P1, 111 P2 8 P1, 141 P2
Physical Layout Offices Offices Office/shared space
Customer
Communication

Onsite, email, chat,
phone

Onsite, email,
chat, phone

partners, in person,
email

Customer Cardinality
and Location On-Site, Remote On-Site N/A

team [25] “decided to implement it for all tasks in the
project’s future” because they felt it was an effective means
of collaboratively producing unbiased estimates.

Planning Poker is “played” by the team as a part of the
Sprint Planning meeting. A Planning Poker session begins
by the customer or marketing representative explaining each
requirement to the extended development team. We use the
term extended development team (often called the “whole
team” [4] by agile software developers) to refer to all those
involved in the development of a product, including product
managers, project managers, software developers, testers,
usability engineers, security engineers and others. In turn,
the team discusses the work involved in fully implementing

and testing a requirement until they believe that they have
enough information to estimate the effort. Each team
member then privately and independently estimates the
effort. The team members reveal their estimates
simultaneously. Next, the team members with the lowest
and highest estimate explain their estimates to the group.
Discussion ensues until the group is ready to re-vote on their
estimates. More estimation rounds take place until the team
can come to a consensus on an effort estimate for the
requirement. Most often, only one or two Planning Poker
rounds are necessary on a particular requirement before
consensus is reached.

 Planning Poker provides a structured means for:

• obtaining a shared understanding;
• exposing hidden assumptions of the technical

aspects of implementation and verification;
• discussing the implications throughout the

system for implementing a requirement;
• surfacing and resolving ambiguities realized

via divergent perspectives on the requirement;
and

• exposing easy and hard alternatives for
achieving desired goals.

The Microsoft teams felt the use of Planning Poker
enabled their team to have relatively low estimation error
from the beginning of the project. Figure 1 depicts the
estimation error for Team A (the middle line) relative to the
cone of uncertainty (the outer lines). The cone of
uncertainty is a concept introduced by Boehm [8] and made
prominent more recently by McConnell [24] based upon the
idea that uncertainty decreases significantly as one obtains
new knowledge as the project progresses [22]. Team A’s
estimation accuracy was relatively low starting from the
first iteration. The team attributes their accuracy to the use
of the Planning Poker practice.

Figure 1: Cone of uncertainty

The teams indicate that the use of the Planning Poker
practice required more upfront work prior to each Planning
Poker session at the start of each iteration. This upfront
work includes the product owner fully defining small user-
visible, user-valued feature requirements that could be
completed in one iteration or less, high level architectural
analysis or prototyping, and possibly preliminary user-
interface design. However, this upfront work enables the
team to complete features in one iteration as uncertainty
about the expectations for a feature has been reduced. The
teams indicate that occasionally the Planning Poker voting
results in a deadlock when no consensus can be reached. In
most cases, the deadlock in estimation is desirable. The
deadlock signals that the product owner has not fully
described the work to be delivered or that a spike is
necessary to investigate a significant unknown prior to the
feature being accepted into a Sprint and that the feature

needs to be put on the backlog until the investigation has
been conducted.

3) Continuous Integration
The teams utilized the continuous integration practice.

Continuous integration is a software development practice
where members of a team integrate their work into the main
build system frequently. Usually each developer integrates
at least daily. Each integration is verified by an automated
process that runs all automated tests that should detect
integration errors as quickly as possible.

As shown in Table I, the Microsoft teams checked in
their new code at least once per day. Each check-in initiated
a build. Each build entailed the running of automated unit
tests and associated test coverage computation. The team
automatically received an email confirmation of the
completion of the build providing test results. All tests must
pass for the build to be considered successful. The used
Microsoft Visual Studio Team Build Server to manage their
check-ins, build process, and automated test runs.

The Microsoft teams managed their build/continuous
integration process themselves rather than getting help from
a build support organization. They indicated that the
benefits from continuous integration’s ability to keep a
constant focus on quality come with a cost. Builds and test
runs are not always successful, causing engineers to need to
deal with issues such as bad merges, build system problems,
and source control integration problems.

4) Unit Test-Driven Development
Unit test-driven development [3] is a practice that has

been used sporadically for decades [7, 14]. With this
practice, a software engineer cycles on a minute-by-minute
basis between writing failing automated unit tests and
writing implementation code to pass those tests.

Case studies [7, 26, 28, 32] were conducted with four
development teams at Microsoft (Windows, MSN, Visual
Studio, and one unnamed application) developed in C++
and C# and one IBM device driver team that developed in
Java. All had transitioned from an ad hoc unit testing
practice to the team-wide use of automated unit testing
using the NUnit3 or JUnit4 frameworks. The TDD teams
realized a significant decrease in defects, from 20% to 91%.

The main difference between the Windows, MSN,
Visual Studio, and IBM teams versus the Microsoft
application team was that the first four developed automated
unit tests incrementally on a minute-by-minute basis.
Developers took from 15% to 35% longer to achieve this
quality gain. However, the quality improvement due to
reduced defects, leading to less debug and field support time
makes up for this increase in development time.

3 http://www.nunit.org/index.php
4 http://junit.org/

-‐100%	

0%	

100%	

200%	

300%	

400%	

500%	

1	
1.
1	

1.
2	

1.
3	

1.
4	

1.
5	

1.
6	

1.
7	

1.
8	

1.
8.
1	

1.
8.
2	

1.
8.
3	

1.
10
	

Es
#m

a#
on

	 E
rr
or
	

Itera#on	

Teams A, B, and C did not write unit tests on an minu-
te-by-minute basis. Instead, they backtracked to write
automated unit tests after completing a major piece of
functionality or completing a class. They also estimate that
writing test cases added approximately 20% to their
development time. As shown in Table I, the ratio of test
lines of code (LOC) to source LOC ranged from .46 to .84.
The test coverage ranged from 53% to 82%. Team B had
the lowest test LOC/source LOC ratio and the lowest
coverage. As will be discussed in Section VI, Team B also
had the highest defect density. As indicated above,
automated unit test runs were done as a part of the
continuous integration build process. All testing was done
using Visual Studio’s test tools, such as the use of the NUnit
test framework with the MSTest adapter.

5) Quality Gates (a.k.a. “Done Criteria”)
Rather than tracking what percentage of a new feature

is complete for an engineer, most agile teams use a binary
“all or nothing” means of feature completion tracking. The
feature is considered “not complete” until it is not only
implemented but can pass all the quality “done criteria” that
has been pre-established by the team. Done criteria is
essential for preventing Flaccid Scrum. Sound ‘done’
criteria can prevent the team from rushing through the
implementation of features such that a simple demonstration
of a feature can be done in the Iteration Review meeting
without the feature being robust enough to handle
alternative flows and/or error handling.

The Microsoft team calls their done criteria “quality
gates.” The quality gates established for these teams
included the following:

• All unit tests must pass
• Unit test code coverage must be at least 80% (for

all teams except Team B)
• All public methods must have documentation
• All non-unit test code must not have any static

analysis errors or warnings (see Sub-Section 9 of
this section)

• Build must compile with no errors or warnings on
the highest level

The team feels these quality gates provide concise and

measurable exit criteria for their feature development,
putting the focus on quality of features rather than quantity
of features. However, the use of quality gates do, however,
impose overhead on their process due to the need for
monitoring.

6) Source Control
Source control is management of changes to

documents, programs, and other information stored as
computer files through a source control system. The
Microsoft teams used the Visual Studio Team Foundation
Server Version Control tool. Any contributor could check

code into the development branch. Only project
administrators could integrate code into the main branch.
Code was moved from the main branch to the release branch
at the end of each Sprint.

The teams felt that source control was beneficial for
change tracking, branching, and merging. Source control
was also used to manage access control to code whereby
some could read code and others could contribute to code.
Source control also provided a central managed store for
data. Additionally, complicated use cases were challenging
to manage since such use cases would involve a larger
quantity of files that might be owned by other engineers.

7) Code Coverage
Engineers were required to manage their automated unit

test coverage and monitored this coverage with each build.
Two of the teams (A and C) followed the Microsoft
Engineering Excellence recommendation of having 80%
unit test coverage. The team felt that managing coverage
was helpful for finding dead code and areas that needed
better testing. Obtaining higher coverage was difficult due
to the need to force tests to execute error conditions;
coverage beyond the prescribed 80% might be considered to
have diminishing returns. The teams did not consider high
coverage as an indication that the code is of high quality,
only a measure of unit test effectiveness. Unit tests may
detect errors of commission, such as an incorrect
computation or incorrect logic, but not errors of omission,
such as missing functionality.

8) Peer Review
In each iteration, the teams conducted design reviews of

architecture diagrams and of code when adding new
features. The built-in Visual Studio code review tool was
used. Senior developers conducted the reviews. When code
was checked in, the reviewer(s) names were entered into the
tool. The teams felt the reviews significantly improved the
quality of the code by removing faults that may have
escaped to the field.

9) Static Analysis Tools
The use of static analysis tools can identify common

coding problems [17] or unusual code [1] early in the
development process [9]. The teams utilized the FxCop
static analysis tool built into Visual Studio. They also had
static compiler warnings set to the highest sensitivity.
Engineers had to explain to a senior engineer when they
suppressed warnings from the compiler or FxCop and
document their justification in the source code. They felt
that the use of FxCop trained them to use better coding
practices and was an effective learning tool. They also felt
that peer reviews were more effective because fixing FxCop
and compiler warnings caused them to find and fix the small
errors. The teams felt that the use of static analysis tools
can be difficult when not used from the beginning of a

project because the engineers can become overwhelmed
with warnings.

10) XML Documentation
The team used .NET-style inline XML generated

documentation on all public classes, properties, and
methods. As a result the code was self-documenting.

V. RESULTS
The transition to the new Scrum process did

temporarily reduce the productivity of the team. However,
the teams had recovered and improved productivity by the
end of the fourth iteration. Team A was able to achieve a
250% improvement, (to sustain aggressive code addition all
while able to meet stringent quality gates) in the number of
lines of code produced in each sprint by the fourth sprint
(Figure 2). This improved productivity directly translated
into capacity the teams leveraged to complete more user
stories and Sprint tasks while meeting all of the quality
gates.

Figure 2: Cumulative Lines of Code Produced

Also in this paper we report on the various engineering
practices that were followed during the course of software
development using the Scrum development practice. To
compare and contrast the quality of the software systems
produced, we compare against prior published defect
density rates [23] of a non-Scrum project at IBM. All three
of the Microsoft projects were first releases so we could not
use a prior Microsoft release as a baseline. The same
project could not be repeated using a non-Scrum team as is
common with case study research. hence and difference in
comparison points. Further we also compare, in Figure 3,
against data extracted from the Bangalore benchmarking
group5 where benchmarks were developed across 40
projects from nine companies (Honeywell, HP, IMR,
Logica, Motorola, Novell, Philips, Verifone,WiproTech).
Predominantly C, C++, Java are the languages used in these
40 projects. The average size of project was 43 KLOC (Min
- 4 KLOC, Max - 300 KLOC). The average effort was 910

5 http://www.bspin.org/archeives11/BSIG-SPINtalk-2000.ppt

Staff/Person days (Min – 203 staff/person days, Max –
4664 Staff/person days).

The results in Figure 3 indicate that the Scrum projects
had lower defect density (defects per line of code) that the
non-Scrum projects except in the case of Team B. Team B’s
testing effort was relatively low (Source/test LOC ratio is
0.53) indicating the lowest effort amongst all Scrum
projects. These results further back up our assertion on the
importance of the engineering practices followed with
Scrum (in this case more extensive testing) rather than the
Scrum process itself.

Figure 3: Comparing defect density for Scrum and non-Scrum teams

VI. LIMITATIONS
As with all case study research, our results are only

valid in the context of these three teams and the results may
not generalize beyond these three teams. The same teams
could not repeat the projects in a non-Scrum environment.
Therefore, our comparisons are not on the same projects.
Additionally, all three Microsoft teams were relatively small
teams so our research does not address scalability of Scrum
to larger teams.

Also we compare the productivity of the teams relative
to their productivity prior to Scrum. There could have been
factors regarding expertise in the code base, which could
have also contributed to these results. But considering the
magnitude of improvement 250%, there would still have to
be an improvement associated with Scrum even after taking
into account any improvement due to experience
acquisition.

The teams utilized all the basic Scrum practices as well
as nine additional engineering practices. We cannot
distinguish which of these practices were the biggest drivers
in the productivity and quality results observed.

VII. LESSONS LEARNED
In this paper, we present the engineering practices that

were part of the Scrum development process at Microsoft.
The three teams at Microsoft used the following nine
practices with their Scrum framework.

1. Planning poker

0	
5	

10	
15	
20	
25	

Defect	 Density	

2. Continuous integration
3. Unit Test-Driven development
4. Quality gates
5. Source control
6. Code coverage
7. Static analysis tools
8. Peer review
9. XML documentation

The productivity of the teams as they transitioned to
agile temporarily dropped for three iterations. The team
attributed this drop to their unfamiliarity of Scrum and
required a “gelling” period to start delivering value based on
the development process. From their fourth sprint on they
experienced a significant improvement in productivity
without an increase in defects. Teams transitioning to the
use of an agile software development should plan for a
similar temporary productivity decrease.

Teams that used Scrum and sound engineering practices
showed better quality in terms of defect density compared
with similar non-Scrum teams including data benchmarked
across 40 projects from nine companies. These results
indicates that Scrum combined with sound engineering
practices have the potential to yield a higher quality product.
Team B that followed Scrum but the engineering practices
to a lesser degree than Teams A and C had the highest
defect density.

Finally, our results indicate that estimation accuracy
was enhanced by the use of the Planning Poker practice.

ACKNOWLEDGMENTS
Funding for first author Laurie Williams was provided by
the ScrumAlliance.

REFERENCES

[1] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,

"Evaluating Static Analysis Defect Warnings On Production
Software," in 7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, San Diego, CA, USA,
2007, pp. 1-8.

[2] V. Basili, F. Shull, and F. Lanubile, "Building Knowledge Through
Families of Experiments," IEEE Transactions on Software
Engineering, vol. 25, no. 4, pp. 456 - 473, 1999.

[3] K. Beck, Test Driven Development -- by Example. Boston: Addison
Wesley, 2003.

[4] K. Beck, Extreme Programming Explained: Embrace Change,
Second ed. Reading, MA: Addison-Wesley, 2005.

[5] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.
Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R.
Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J.
Sutherland, and D. Thomas, "The Agile Manifesto,"
http://www.agileAlliance.org, 2001.

[6] A. Begel and N. Nagappan, "Usage and Perceptions of Agile
Software Development in an Industrial Context: An Exploratory
Study," in Empirical Software Engineering and Measurement
Conference (ESEM), Madrid, Spain, 2007, pp. 255-264.

[7] T. Bhat and N. Nagappan, "Evaluating the efficacy of test-driven
development: industrial case studies," in ACM/IEEE international
symposium on International symposium on empirical software
engineering, Rio de Janeiro, Brazil, 2006, pp. 356 - 363

[8] B. W. Boehm, Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1981.

[9] B. Chess and J. West, Secure Programming with Static Analysis, 1st
ed. Upper Saddle River, NJ: Addison-Wesley, 2007.

[10] A. Cockburn, Agile Software Development. Reading, Massachusetts:
Addison Wesley Longman, 2002.

[11] M. Cohn, Agile Estimating and Planning. Upper Saddle River, NJ:
Prentice Hall, 2006.

[12] K. Dinakar, "Agile Development: Overcoming a Short-Term Focus in
Implementing Best Practices," in Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA) 2009,
Orlando, FL, pp. 579-588.

[13] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach: Brooks/Cole, 1998.

[14] J. Grenning, "Planning Poker or How to avoid analysis paralysis
while release planning," 2002,
https://segueuserfiles.middlebury.edu/xp/PlanningPoker-v1.pdf.

[15] N. C. Haugen, "An empirical study of using planning poker for user
story estimation," in Agile 2006, Minneapolis, MN, 2006, p. 9 pages
(electronic proceedings).

[16] J. Highsmith, Agile Software Development Ecosystems. Boston, MA:
Addison-Wesley, 2002.

[17] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy," in 19th ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, Vancouver, British Columbia, Canada, 2004, pp.
132-136.

[18] C. R. Jakobsen and J. Sutherland, "Scrum and CMMI – Going from
Good to Great," in Agile 2009, Chicago, IL, 2009, pp. 333 - 337

[19] B. Kitchenham, L. Pickard, and S. L. Pfleeger, "Case Studies for
Method and Tool Evaluation," IEEE Software, vol. 12, no. 4, pp. 52-
62, July 1995.

[20] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg, "Preliminary Guidelines for
Empirical Research in Software Engineering," IEEE Transactions on
Software Engineering, vol. 28, no. 8, pp. 721-733, August 2002 2002.

[21] H. Kniberg and R. Farhang, "Bootstrapping Scrum and XP under
crisis," in Agile 2008, Toronto, Canada, 2008, pp. 436 - 444.

[22] T. Little, "Schedule Estimation and Uncertainty Surrounding the
Cone of Uncertainty," IEEE Software, vol. 23, no. 3, pp. 48-54, 2006.

[23] E. M. Maximilien and L. Williams, "Assessing Test-driven
Development at IBM," in International Conference of Software
Engineering, Portland, OR, 2003, pp. 564-569.

[24] S. McConnell, Rapid Development: Taming Wild Software
Schedules: Microsoft Press, 1996.

[25] K. Moløkken-Østvold and N. C. Haugen, "Combining Estimates with
Planning Poker – An Empirical Study," in Australian Software
Engineering Conference (ASWEC'07), Melbourne, Australia, 2007,
pp. 349-358.

[26] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams,
"Realizing Quality Improvement Through Test Driven Development:
Results and Experiences of Four Industrial Teams," Empirical
Software Engineering, vol. 13, no. 3, pp. 289-302, June 2008.

[27] C. Potts, "Software Engineering Research Revisited," IEEE Software,
no. pp. 19-28, September 1993.

[28] J. Sanchez, L. Williams, and M. Maximilien, "A Longitudinal Study
of the Test-driven Development Practice in Industry," in Agile 2007,
Washington, DC, pp. 5-14.

[29] K. Schwaber and M. Beedle, Agile Software Development with
SCRUM. Upper Saddle River, NJ: Prentice-Hall, 2002.

[30] Version One, "Second Annual Survey 2007 The State of Agile
Development," 2007,
http://www.versionone.com/pdf/StateOfAgileDevelopmet2_FullData
Report.pdf.

[31] Version One, "Third Annual Survey 2008 The State of Agile
Development," 2008

http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataRe
port.pdf.

[32] L. Williams, G. Kudrjavets, and N. Nagappan, "On the Effectiveness
of Unit Test Automation at Microsoft," in International Symposium
on Software Reliability Engineering, Mysuru, India, 2009, pp. 81-89.

[33] L. Williams, L. Layman, and W. Krebs, "Extreme Programming
Evaluation Framework for Object-Oriented Languages -- Version
1.4," North Carolina State University, Raleigh, NC Computer Science
TR-2004-18 http://www.csc.ncsu.edu/research/tech/reports.php,
2004.

[34] M. V. Zelkowitz and D. R. Wallace, "Experimental Models for
Validating Technology," IEEE Computer, vol. 31, no. 5, pp. 23-31,
May 1998.

