
Pair Programming in an Introductory Computer Science
Course: Initial Results and Recommendations

Laurie Williams
Department of

Computer Science
North Carolina
State University

Raleigh, NC 27695
+1 919-515-7925

williams@csc.ncsu.e
du

Kai Yang
Department of

Computer Science
North Carolina
State University

Raleigh, NC 27695

kyang@unity.ncsu.ed
u

Eric Wiebe
Department of

Math, Science and
Technology Educ.

North Carolina
State University

+1 919-515-1753
wiebe@unity.ncsu.ed

u

Miriam Ferzli
Department of

Math, Science and
Technology Educ.

North Carolina
State University

+1 919-828-5599
@unity.ncsu.edu

Carol Miller
Department of

Computer Science
North Carolina
State University

+1 919-515-2042
miller@unity.ncsu.ed

u

ABSTRACT

Prior research indicates that pair programming, whereby two
programmers work collaboratively on the same design,
algorithm, code, or test, produces higher quality code in
essentially half the time taken by solo programmers. An
experiment was run at North Carolina to assess the efficacy of
pair programming in the introductory CS1 course. Results
indicate that relative to students who program individually, pair
programmers are more self-sufficient, perform better on
projects, and are more likely to complete the class with a C or
better

Keywords
pair programming, collaborative learning, Computer Science
education, Extreme Programming, XP

1. INTRODUCTION
In industry, programmers collaborate for the majority of their
day. In Peopleware [5], it was reported that software
developers generally spend 30% of their time working alone,
50% of their time working with one other person, and 20% of
their time working with two or more people. Yet, most often
when completing their degree, programmers must learn to
program alone; collaboration is considered cheating. This is
unfortunate not only because collaboration is encouraged and
required in a student’s future professional life, but there are
also findings that cooperative and collaborative pedagogies are
beneficial to students [8, 9].

An emerging software development methodology, Extreme
Programming (XP) [1], has recently popularized a structured
form of programmer collaboration called pair programming.
Pair programming is a style of programming in which two
programmers work side-by-side at one computer, continuously
collaborating on the same design, algorithm, code, or test. One
of the pair, called the driver, is typing at the computer or
writing down a design. The other partner, called the
navigator, has many jobs. One is to observe the work of the
driver – looking for tactical and strategic defects in the work of
the driver. Tactical defects are syntax errors, typos, calling the
wrong method, etc. Strategic defects are when the driver is

headed down the wrong path – what they are implementing
just won’t accomplish what it needs to accomplish. The
navigator is the strategic, longer-range thinker. Any of us can
be guilty of straying off the path. A simple, “Can you explain
what you’re doing?” from the navigator can serve to bring us
back to earth. The navigator has a much more objective point
of view and can better think strategically about the direction of
the work. Additionally, the driver and the navigator can
brainstorm on-demand at any time. An effective pair
programming relationship is very active. The driver and the
navigator communicate, if only through utterances, at least
every 45 to 60 seconds. Periodically, it’s also very important
to switch roles between the driver and the navigator.
Research results [3, 12, 13] indicate that pair programmers
produce higher quality code in about half the time when
compared with solo programmers. Those who follow the XP
methodology feel so strongly about the benefits of pair
programming that all production code must be written with a
partner [11]. Even prototyping done solo is scrapped and re-
written with a partner.

The research results referenced above were based on
experiments held at the University of Utah in the senior-level
Software Engineering course [12-15]. The focus of this
research was on the affordability of the practice of pair
programming, the ability of the practice to yield higher quality
code without significant increases in time/cost. However, the
researchers observed educational benefits for the student pair
programmers. These benefits included superior results on
graded assignments, increased satisfaction/reduced frustration
from the students, increased confidence from the students on
their project results, and reduced workload of the teaching
staff.

These observations inspired further research directed at the
use of pair programming in educating Computer Science
students. Educators at the University of California -Santa Cruz
have reported on the use collaborative laboratory activities in
an introductory undergraduate programming course,
specifically in the form of pair programming [2, 7]. They have
found that pair programming improved retention rates and
performance on programming assignments. This paper details
the results of an additional experiment that was held at North

Carolina State University (NCSU) in 2001. The experiment
was specifically designed to assess the efficacy of pair
programming in an introductory Computer Science classroom.

2. EXPERIMENT
An experiment was conducted in the CS1 course, Introduction
to Computing – Java. The course is taught with two 50-
minutes lectures and one three-hour lab each week. Students
attend labs in groups of 24 with others in their own lecture
section. The lab period is run as a closed lab, whereby
students are given a weekly assignment to complete during the
allotted time. The lab assignments are “completion”
assignments whereby students fill in the body of methods in a
skeleton of the program prepared by the instructor. Student
grades are based on two midterm exams, one final exam, lab
assignments, and three programming projects that are
completed outside of the closed lab. The projects are
generative, in that students start from scratch without any
structure imposed by the instructor. The course is a service
course, and is therefore taken by many students throughout the
university. Most students are from the College of Engineering.
Additionally, most students are freshman; however students of
all undergraduate and graduate levels also take the course to
learn competitive programming skills.

As educators, we were concerned that the academically
weaker or less motivated students would allow their partner to
do all the work. To alleviate this concern, each time the
students were assigned a new partner, they were required to
complete a peer evaluation on their prior partner. The students
rated their partner on a scale from 0 (poor) to 20 (superior) for
each of these five questions:

1. Did your partner read the lab assignment and
preparatory materials before coming to the
scheduled lab?

2. Did your partner do their fair share of the work?
3. Did your partner cooperatively follow the pair

programming model (rotating roles of driver and
navigator)?

4. Did your partner make contributions to the
completion of the lab
assignment?

5. Did your partner cooperate?

The sum of the ratings on each of these questions yielded a
grade from 0-100%. Each student’s lab grade was multiplied
by this peer evaluation factor. For example, if a student had a
90% lab average but a peer evaluation score of 50%, they
received a final lab grade of 45%. We had successfully used
this form of peer evaluation in past classes. We have found
that it does motivate students to do their share of the work. In
general, 95% of the class will report that their partner did their
share of the work, and would assign him or her 100%. In a
minority of cases, the peer evaluation score is a strong signal
of a student who is truly not putting forth the necessary effort.

Closed labs are excellent for controlled use of pair
programming [2]. The instructor or teaching assistant can
ensure that people are, indeed, working in pairs at one
computer. He or she can also monitor that the roles of driver
and navigator are rotated periodically. Many classes have

programs that require work outside of close lab. We have
found that you simply cannot enforce pair programming outside
of the classroom. Some students will come to fully appreciate
the benefits of pair programming and will seek to work with a
partner outside of class. Others will choose to work alone,
whether they prefer pair programming or not, often because
they would prefer to work on homework in the comfort of their
dorm room at any hour of the day or night. Pairing outside of
lab requires time planning and coordination; some students
view the added coordination as a hassle. In the CS1
experimental course, the students completed three
programming projects outside of the closed lab environment.
We gave the students in both sections the option of working
alone or pair programming for these projects. Many chose to
pair program. However, we found instances of students who
were doing very poorly in the class pairing with students who
were doing well in the class. Often, these students did well on
the projects, causing suspicion that the stronger student did
most or all of the work. As a result, starting in the Spring 2002
class, we instituted a policy that students must earn the right to
pair program on the projects by attaining a score of 70% or
better on the exams.

The Fall 2001 experiment was run in two sections of the
course; the same instructor taught both sections. Additionally,
the midterm exams and the final exam were identical in both
sections. (The exams were given to the second section
immediately after the first, leaving little time for students to tell
the second section about the exam content.) One section had
traditional, solo programming labs. In the other section,
students were required to complete their lab assignments
utilizing the pair programming practice. When students
enrolled for the class, they had no knowledge of the
experiment or of that one section would have paired and other
would have solo labs. In the pair programming labs, students
were randomly assigned partners based on a web-based
computer program and not student preferences. They worked
with the same partner for two to three weeks. If a student’s
partner did not show up after 10 minutes, the student was
assigned to another partner. If there were an odd number of
students, three students worked together; no one worked
alone.

In the Fall, 112 students were in the solo section and 87 were
in the paired section. Our study was specifically aimed at the
effects of pair programming on beginning students. Therefore,
we chose to analyze the results of the freshman and
sophomores only. We also only chose students who took the
course for a grade, concluding that students who audited the
class or took it for credit only were not as motivated to excel
as other students. This reduced our sample size to N=69 in the
solo section and N=44 in the paired section. In our experiment,
we examined the following hypotheses:

• A higher percentage of students that have participated in
pair programming in CS1 will succeed in the class by
completing the class with a grade of C or better.

• Students’ participation in pair-programming in CS1 will
lead to better performance on examinations (exams are
completed solo by all students) in that class

• Students’ participation in pair-programming in CS1 will
lead to better performance on course projects in that class

• Students’ participation in pair-programming in CS1 will
lead to a more positive attitude toward the course and
toward Computer Science in general

• Students’ participation in pair-programming lead to a
lower workload for course staff

3. QUANTITATIVE FINDINGS
3.1 Success Rate/Retention
We examined the percentage of students who succeeded in
the class by completing the course with a grade of C or better.
Historically, beginning Computer Science classes have poor
success rates. For all the good intentions and diligent work of
computer science educators, students find introductory
computer science courses very dauntingso daunting that
typically one-quarter of the students drop out of the classes
and many others perform poorly.

In the solo section, only 45% of the students we studied
successfully completed the course with a grade of C or better.
Comparatively, 68% of the students in the paired section met
these criteria. A Chi-Square test reveled that this difference in
success rates is statistically significant (?2(1)=7.056, p <
0.008). These results are consistent with a similar study at the
University of California UC-Santa Cruz that reported 92% of
their paired class and 76% of their solo class took the final
exam [7].

3.2 Performance on Examinations
On average, students in the paired section performed better on
the two midterm examinations and the final examination, as
shown in Table 1. We removed any scores of 0 from our
analysis; these results are based on scores of students who
attempted to take the exam.

Table 1: Exam Scores

Exam Paired
Mean

Paired
Standard
Deviation

Solo
Mean

Solo
Standard
Deviatio

n

Midterm 1 78.7 11.8 73.4 13.8

Midterm 2 65.8 24.2 49.5 27.2

Final 74.1 16.5 67.2 18.4

As stated earlier, students chose their class section without
knowledge of the experiment or pair programming. We had

hoped that their random enrollment in the class would yield
equivalent sample groups based on their SAT-M scores.
Unfortunately, this was not the case. The students in the
paired group had a mean SAT-M score of 662.10 while the
solo group had a mean score of 625.43. The One-Way
ANOVA revealed that this difference was statistically
significant (F(1.101)=5.19, p<0.018). An ANCOVA further
revealed a correlation between SAT-M scores and exam
scores, when considered for each exam individually
(F(1,98)=36.32, p<0.0001; F(1,98)=41.41, p<0.0001). When
using SAT-M as a covariate, an ANCOVA does not show any
significant difference between sections with regards to
midterm or final exam scores. Based on these results, we
cannot conclude that pair programming in the laboratory helped
students perform better on exams.

We wish to discuss two factors that may influence these
results. First, changes in the lab portion of the course may
have enough of an influence on student work and attitudes to
keep them from dropping out of the course or boosting their
grades enough to pass the course. This may have dampened
the overall distribution of grades in the paired section since it
may have kept poorer performing students in the calculation
pool whereby these poorer performing students dropped the
class or did not take exams, so they are not in the calculation
pool. Researchers at UC-Santa Cruz have made this same
speculation [7] because their paired section also did not have
statistically significant higher test scores. Additionally, only
approximately 40% of the exam content required program
code to be written in the answers. The rest of the exams were
short answer and multiple choice. Quite feasibly, pair
programming might not help students answer short answer and
multiple choice questions on the material better. The classes’
scores on only the portion of the exam that did require
programming is not available.

3.3 Performance of Programming Projects
On average, students in the paired section performed better on
the two of three programming projects, as shown in Table 2.

Table 2: Programming Project Scores

Exam Paired
Mean

Paired
Standard
Deviation

Solo

Mean

Solo
Standard
Deviation

Project 1 94.6 5.3 78.2 26.5

Project 2 86.3 19.7 68.7 33.7

Project 3 73.7 27.1 74.4 29.0

The ANCOVA demonstrated a statistically significant
improvement in performance of the pairs on Project 1
(F(1,94)=8.12, p<0.0054) and Project 2 (F(1,78)=4.52,
p<0.0367). However this demonstrated improved performance
does not occur in Project 3. Perhaps, this is because by
Project 3 the lower performing students had dropped in the
solo section but were still working in the paired section.

3.4 Attitude
We hypothesize that students in paired labs will have a more
positive attitude toward the course and about Computer

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

Science in general. We based this hypothesis on prior
observations that beginning classes can be very frustrating.
Students might debug a program for several hours because of
a very simple syntactical error. These kinds of errors would
likely be caught by the navigator, precluding the need for
extensive, frustrating debugging sessions.

We looked at specific questions on the student course
evaluation, because both sections were taught by the same
instructor. The only data available on course evaluation is a
mean score, so no statistical evaluation could be performed.
On the course evaluation, a 1 is an unfavorable score and a 5
is a very favorable score. As shown in Table 3, students did
feel more favorable toward the course and the instructor in the
paired section:

Table 3: Course Evaluations

Exam Paired
Mean

Solo

Mean

Course Effectiveness 3.97 3.58

Instructor Effectiveness 4.20 3.69

Classroom is Conducive to
Learning

4.26 4.26

4. QUALTITATIVE RESULTS
In order to gain insights about the student-student, instructor-
student dynamics of the pair-programming protocol, we
collected observations during paired and unpaired computer
programming laboratory sessions. Observational data was
collected in the Spring semester 2002 on a weekly basis, during
a continuation of the controlled study conducted in the Fall
semester 2001. The setting for the observations was the actual
laboratory CS1, which students attend for three hours every
week. Analysis of the observational data allowed us to
document major issues related to the pair-programming
protocol that would not surface during the other components of
the study.

4.1 Paired Labs
4.1.1. Learning
Without exception, students in the pair-programming lab
sessions showed a high level of interaction with each other.
Students were discussing issues related to the programming
assignment on a consistent basis. Students questioned,
directed, and guided each other throughout the lab session.
When student pairs could not seem to answer questions on
their own, they would ask the instructor; but the interaction
with the instructor was usually very brief (less than five
minutes). A lot of students’ questions to instructors were of a
logistical rather than conceptual nature. On a very frequent
basis, pairs resolved their own problems without the
instructor’s help. Overall, instructors spent very little time
answering questions. Most instructor-student interactions
seemed to take the form of extended discussions. Students
would want to know how to apply what they were doing to
another scenario. Hypothetical discussions of applications

showed evidence of higher-level thinking processes that went
beyond the scope of the programming assignment.

4.1.2 Driver and Navigator Roles
Although the pair-programming protocol is set up to give
students an opportunity to experience two different roles while
programming, some students remain marginal players in this
setting. Several students were observed to give little or no
input during the entire lab session. According to
cooperative/collaborative learning research, there are several
reasons why students remain disengaged. Students may be
mismatched based on their achievement level, gender, or
cultural roles [10]. In such cases, it is common for one student
in the group to take over.

With the exception of a few pairs, most student pairs seemed
reluctant to reverse roles immediately after being told to.
Some students remained in the same role—either navigator or
driver—during the entire lab session. Other students reversed
roles at times other than those indicated by the lab instructor.
In either case, it seemed that students either found it
inconvenient or unnecessary to reverse roles. Perhaps
reversing roles at prescribed time interrupts the flow of work,
so students opted not to reverse roles; or students need to find
a pausing point before they can reverse roles.

Whether or not students take on their appropriate roles during
the specified times, they do show increasing willingness to take
on the driver/navigator roles with each passing week. Easing
into the pair-programming protocol over time may suggest that
students need time to become familiar with the paired protocol
before they can feel comfortable. This makes sense since
undergraduate students may not be accustomed to a
collaborative learning approach in a computer lab session.
Most students in this type of setting are used to individual
work, even though they will encounter a collaborative approach
to programming and project building in the workplace [4].

4.1.3 Instructors’ Roles
The role of the laboratory instructor seems crucial to the
success of the pair-programming protocol. When instructors
explained and reinforced the pair programming protocol on a
regular basis, students were more apt to assume appropriate
roles as well as reverse roles when necessary. In labs where
instructors forgot to ask students to reverse roles, no role
reversal occurred. In labs where the instructor failed to
enforce the pair-programming protocol, students opted for
individual work. Students who chose to pair on their own did
not follow the correct protocol. These students worked at their
own computers while they engaged in some level of
collaboration with no evidence of driver/navigator roles.
Instructors that did enforce the pair-programming protocol,
were more likely get students involved in team learning.
Without instructor reinforcement, students very easily reverted
to the individual work with which they are so accustomed.

4.2 Solo Labs
Overall, the solo labs, or control lab sessions, were very quiet.
There was little or no discussion between students, and
students had questions on a frequent basis. When the

instructors answered students’ questions, they spent a
minimum of five minutes and a maximum of twenty minutes
with each student. Instructors remained busy answering
questions for the duration of the lab sessions. Often, students
with questions sat and waited for long periods of time
(maximum of thirty minutes) before they could get help.
During this time, students seemed “stuck” and could not go any
further. Some students in these situations opted to help each
other, but their interactions remained brief and sporadic. On
some occasions when they needed help but their neighbor
seemed too busy to help them, students leaned over to look at
their neighbor’s computer screen.

4.3 Summary of Findings:
Students in paired labs engage in extensive discussion
throughout the entire lab session, and students seem to help
each other resolve questions. Instructors spend more time
discussing advanced issues with students, rather than
answering basic questions. Students seem to show evidence
of higher order thinking—synthesizing and applying lab material
to other scenarios. Students seem to take on navigator/driver
roles with more ease when these roles are when reinforced by
the instructor. Students switch roles at their own pace,
perhaps because they need to reach an agreed “cut-off” point.

Students in solo labs seem to fall into student helper roles
naturally. Students, who run into problems, spend a lot of time
waiting for the instructor to help them. Although students
seem to interact with each other, interactions are brief.
Discussion between students is challenging, because students
are at different points in their work and discussion would
disturb their progress. Instructors seem to take on a very
active role when helping students, rather than letting students
figure things out on their own.

5. RECOMMENDATIONS
These benefits are not realized effortlessly. The teaching staff
must be prepared to provide structure and guidance related to
the practice. We now share our recommendation based on our
experiences with pair programming [16]:

• Students cannot be expected to intuitively understand the
pair programming practice. They need be educated in the
subtleties of pair programming of the practices, such as
the role of driver and navigator, the need to rotate roles,
etc. Williams and Kessler [17] provide a useful reference
for students; this should be augmented with an in-class
discussion of the material.

• A structured hands-on pair programming tutorial, such as
outlined in [16] and summarized as an Appendix at the
end of this paper, will aid in the students realizing the
value of pair programming.

• As stated earlier, pair programming works best in a
closed lab setting. If this is not an option due to class
structure, it is recommended that some class time is
dedicated to allowing pairs to discuss their project, plans
and meeting schedule. The more time the students have

to bond and jell in class, the more likely their experiences
outside of class are likely to be.

• In a closed lab, enforce the rotation of roles between
driver and navigator by equipping the lab with a simple
kitchen timer. The teaching staff should regularly remind
the students to switch roles, but should allow for a
reasonable delay for the students to finish their immediate
task.

• In a paired lab, students ask far fewer questions. The
teaching staff should resist the temptation to leave the
students be. The teaching staff should follow the
industrial practice of “Management by Walking Around.”
He or she should periodically circulate among the
students, checking to see that neither student is
dominating and both are contributing as equally as
possible.

• Incorporate a peer evaluation system into your course
practices and ensure the students’ grades are impacted
based on their peer evaluation.

• Several times throughout the semester, switch the
makeup of the pairings. This serves several purposes.
First, by the end of the semester, each student will have
several sets of peer evaluation feedback, which is likely to
be more representative of their overall contribution based
on the opinion of several peers. Second, pairs are less
likely to become irreconcilably dysfunctional because
students know it is not a “permanent” arrangement.
Lastly, students have the opportunity to learn from and
get to know more people in their class.

• When utilizing pair programming in a class without a
laboratory, consider making pair programming optional.
Further, predetermine a level of performance required to
“earn the right” to pair, preventing poor students from
having a way to avoid learning necessary skills by pairing
with a good student who might likely carry the workload
of both.

• As much as possible, have different students start the lab
as the driver each week. This can be done in creative
ways, such as stating that the person with the shortest
hair of the pair start as the driver one week, followed by
the person with the longest hair of the pair in the following
week.

• If there are an odd number of students in the class, have
one three-person group before requiring any student to
work alone. When everyone else in the room is
collaborating, working alone feels exceedingly lonely.

6. SUMMARY
Previous anecdotal evidence supported educational benefits for
the student pair programmers. These benefits included
superior results on graded assignments, increased
satisfaction/reduced frustration from the students, increased
confidence from the students on their project results, and
reduced workload of the teaching staff. A structured,

empirical study began at NCSU in the Fall 2001 semester to
qualitatively and quantitatively examine these anecdotal claims
in a CS1 course; this paper outlines the results of one semester
of this study. Our empirical results indicate that students who
practice a pair programming technique in closed labs are more
likely to persevere through CS1 and receive a grade of C or
better. Student pairs also produced better grades on
programming assignments. The students who are in the paired
labs received higher grades, on average, on examinations,
though this difference was not statistically significant.
Qualitative observations supported that paired closed labs were
a superior learning environment for the students. Paired labs
are also less stressful for the teaching assistants because
students are not as reliant on them as the sole provider of
technical information and help.

What are the implications of these research results to
Computer Science departments? Our findings support that
CS1 closed labs would benefit from transitioning to paired labs.
However, our results also caution that with the benefits
realized with student pair programming come some costs.
Teaching assistants must enforce the pair programming model
by reminding students to periodically rotate the driver and
navigator roles and to notice when one student might be
dominating. In order to create an environment where all
students have the opportunity and the incentive to participate in
assignments, we recommend that partners are assigned and
are not static for the entire semester. This provides a means
for students to report via a peer evaluation on the contributions
of their partners; these peer evaluations should have significant
weight in a student’s grade. Lastly, we advise that lower
performing students are not given the opportunity to pair on
assignments done outside of a closed lab. At NCSU, we have
enforced a cut off that anyone who receives a grade of below
70 on the examinations must complete their outside projects
solo.

7. ACKNOWLEGEMENTS
Funding for the research was provided by the National Science
Foundation Grant 29728000.

8. REFERENCES

[1] Beck, K. (2000). Extreme Programming Explained:
Embrace Change. Reading, MA: Addison-Wesley.

[2] Bevan, J., Werner, L., McDowell, C. (2002). Guidelines for
the Use of Pair Programming in a Freshman Programming
Class, Fifteenth Conference on Software Engineering
Education and Training (CSEE&T 2002).

[3] Cockburn, A. & Williams, L. (2002). "The Costs and
Benefits of Pair Programming" in Extreme Programming
Examined, Boston: Addison-Wesley.

[4] Collings, P. & Walker, D. (1995). Equity issues in
computer-based collaboration: Looking beyond surface
indicators. In Proceedings of CSCL ’95: The First
International Conference on Computer Collaborative Learning,

Schnase, J.L. , Cunnius, E.L., eds. Mahwah: Lawrence
Erlbaum Associates, Inc., pp. 75-83.

[5] DeMarco, T., and Lister, T. (1987). Peopleware, New
York: Dorset House Publishers.

[6] Fennema, E., & Sherman, J.A. (1976). Fennema-Sherman
mathematics attitudes scales. Instruments designed to
measure attitudes toward the learning of mathematics by
females and males. JSAS: Catalog of Selected Documents in
Psychology, 6(31), (Ms. No. 1225).

[7] McDowell, C., Werner, L., Bullock, H., Fernald, J. (2002).
The Effects of Pair Programming on Performance in an
Introductory Programming Course, Proceedings of the
Conference of the Special Interest Group of Computer Science
Educators (SIGCSE 2002).

[8] Slavin, R. (1980). Using Student Team Learning.
Baltimore: The Center for Social Organization of Schools, The
Johns Hopkins University.

[9] Slavin, R. (1990). Cooperative Learning: Theory, Research,
and Practice. New Jersey: Prentice Hall.

[10] Webb, N.M., Nemer, K.M., Chizhik, A.W. (1998). Equity
issues in collaborative group assessment: Group composition
and performance. American Educational Research Journal,
35(4), 607-651.

[11] Wiki. (1999, June 29). Pair Programming. Portland
Pattern Repository, Available at:
http://c2.com/cgi/wiki?PairProgramming.

[12] Williams, L., Kessler, R., Cunningham, W., & Jeffries, R.
(2000, July/August 2000). Strengthening the Case for Pair-
Programming. IEEE Software, vol. 17, no. 3.

[13] Williams, L. A. (2000). The Collaborative Software
Process PhD Dissertation. University of Utah, Salt Lake
City, UT.

[14] Williams, L. A., & Kessler, R. R. (2000). The Effects of
"Pair-Pressure" and "Pair-Learning" on Software Engineering
Education. Thirteenth Conference on Software Engineering
Education and Training (CSEE&T 2000), pp. 59-65.

[15] Williams, L. A., & Kessler, R. R. (2001, March 2001).
Experimenting with Industry’s “Pair Programming” Model in
the Computer Science Classroom. Journal of Computer
Science Education, pp. 1-20.

[16] Williams, L. A., & Kessler, R. R (2002), Pair
Programming Illuminated, Addison Wesley.

[17] Williams, L. A. & Kessler, R. R. (2000), All I Ever
Needed to Know about Pair Programming I Learned in
Kindergarten, Communications of the ACM, May 2000.

APPENDIX: A PAIR PROGRAMMING TUTORIAL

The following three-step tutorial can be run in approximately
one hour. There are three 15-minute activities with group
discussion after each activity. In order to make the experience
as enjoyable as possible for the students, you should have blank
transparencies and markers available. Randomly, student
groups should be chosen to share their drawings with the class.
Students find the sharing enjoyable and entertaining. The
sharing also aids in class discussion of the relevant points.
Through this exercise, pairs learn that they can work together
as a team by pairing because they work together,
communicate, and have a superior knowledge of the overall
team project.

Start the tutorial by having students form groups of 4.
Determine a creative way for students to establish who is
Student A, B, C, and D. We often do this by saying the person
who woke up first is Person A, etc.

Activity 1: Individuals Working on a Team
(15 minutes)
For the first activity, the group is shown a problem statement
for a transportation device. The device needs to be able to:
• Transport people faster than they can move by walking,

but must go less than 10 mph.
• Stop on demand.
• Carry at least one person.
• Restrain passengers, so they don’t fall out.
• Look nice.

Each participant is given the assignment of completing one
aspect of the transportation device design. The four roles are:
Student A: Appearance, Student B: Propelling System,
Student C: Braking System, Student D: Restraint System.
Each participant must complete their assignment without
collaborating with the team. Approximately two minutes are
given for this activity. At this time, each participant is asked to
draw the entire transportation device as they envision it, again
without collaborating with team members (approximately 2
minutes). Lastly, the team members must integrate their
design into one transportation device. They integrated device
must take the appearance from the one participant in charge of
appearance, the braking system from the participant that
designed that, etc. This should take approximately 5 minutes.
The remaining 6 minutes are spent on a discussion of how far
people’s individual view of the system was from the integrated
device. Additionally, it is likely that the integrated device will
not have components that do not logically fit together. Have
selected student groups share their individual and integrated
drawings.

The facilitator should point out the lessons of the exercise:
When engineers work individually on a design, the components
may not fit together when integrated. Additionally, individuals
do not have a good feel of the overall design of the project.

Activity 2: Pair Programming (15 minutes)
For the second activity, the group is shown another, similar
problem statement for a transportation device. The device
needs to be able to:
• Transport faster than 10 mph, but slower than 100 mph.
• Stop on demand.
• Carry at least one person.
• Restrain passengers, so they don’t fall out.
• Look nice.

Participants work in pairs to of complete two aspects of the
transportation device design. The four roles are: Students A
and B: Appearance and Propelling System, Student C and D:
Braking System and Restraint System. Each pair must
complete their assignment without collaborating with the other
pair. Approximately four minutes are given for this activity.
At this time, each participant is asked to draw the entire
transportation device as they envision it, again without
collaborating with any other team members – even their
partner (approximately 2 minutes). Lastly, the team members
must integrate their design into one transportation device.
They integrated device must take the appearance from the one
participant in charge of appearance, the braking system from
the participant that designed that, etc. This should take
approximately 3 minutes. The remaining 6 minutes are spent
on a discussion. Again, have students share their individual
and integrated drawings.

The facilitator should point out the lessons of the exercise:
When engineers work pair on a design, the components are
more likely to fit together better because they have indepth
knowledge of two rather than only one aspect of the design.
Pairs may be more creative in their designs as their synergized
design is likely superior to that done alone. Additionally,
individuals have a better feel of the overall design of the
project.

Activity 3: Pair Rotation (15 minutes)

Participants stay with the group of four they worked with in
Activity III. For the next activity, the group is shown another,
slighly different, problem statement for a transportation device.
The device needs to be able to:
• Transport people faster than 100 mph.
• Stop on demand.
• Carry at least one person.
• Restrain passengers, so they don’t fall out.
• Look nice.
Each participant is assigned a specific role in the design of the
device. The four roles are: Student A: Appearance, Student
B: Propelling System, Student C: Braking System, Student D:
Restraint System. That particular participant is given ultimate
authority of that aspect of the device in the upcoming
collaborative effort. A rotation of pairs then takes place:

• Each participant is assigned a partner to work with.
Together the pair work on the two things they were
assigned for two minutes. (e.g. Students A and B;
Students C and D)

• Partners rotate so that each person is paired with a team
member they did not work with yet for the following two
minutes. Together the pair work on the two things they
were assigned for two minutes. (e.g. Students A and C;
Students B and D)

• Partners rotate again so that each person is paired with
the last team member they did not work with yet for the
next two minutes. Together the pair work on the two
things they were assigned for two minutes. (e.g. Students
A and D; Students B and C)

At this time, each participant is asked to individually draw the
entire transportation device, again without collaborating with
team members (approximately 2 minutes). Lastly, the team
members must integrate their design into one transportation
device. They integrated device must take the appearance
from the one participant in charge of appearance, the braking
system from the participant that designed that, etc. This should
take approximately 3 minutes. The remaining 4 minutes are
spent on a discussion of how far people’s individual view of the
system was from the integrated device. Again, it is fun to
make this point by having selected participant teams draw their
own view and their integrated view on transparency slides.

The facilitator should point out the lessons of the exercise:
Pairs that rotate around a group have a better understanding of
the entire project. Additionally, the components that are
designed by pairs that rotate around the group are more likely
to fit together into a cohesive system.

Summary and Conclusion (5 minutes)
At the end of the session, the facilitator should re-point out the
lessons learned from the exercise. A learning objective of the
session was for people to experience pair programming first-
hand. This was done through the activities. Added objectives
of the activities were to show that pair programming can be
used to better spread system knowledge around a group and to
aid in individual components formulating one cohesive system
when integrated. Additionally, participants learned about
research

After reviewing the objectives of the exercise, the facilitator
should ask for participant feedback and should allow an open
discussion on implementing pair programming in the class.
This kind of discussion could certainly take more than 5
minutes, but should be very valuable.

This tutorial is explained in further detail in [16].

