
GERT: An Empirical Reliability Estimation and Testing
Feedback Tool

Martin Davidsson, Jiang Zheng, Nachiappan Nagappan, Laurie Williams, Mladen Vouk

Department of Computer Science
North Carolina State University, Raleigh, NC 27695

{mhdavids, jzheng4, nnagapp, lawilli3, vouk}@ncsu.edu

Abstract

Software testing is an integral part of the software
development process. Some software developers,
particularly those who use the Extreme Programming test-
driven development practice, continuously write automated
tests to verify their code. We present a tool to complement
the feedback loops created by continuous testing. The tool
combines static source code metrics with dynamic test
coverage for use throughout the development phase to
predict a reliability estimate based on a linear combination
of these values. Implemented as an open source plug-in to
the Eclipse IDE, the tool facilitates the rapid transition
between unit test case completions and testing feedback.
The color-coded results highlight inadequate testing efforts
as well as weaknesses in overall program structure. To
illustrate the tool’s efficacy, we share the results of its use
on university software engineering course projects.

1. Introduction

With the increasing recognition that software reliability
is essential to the success of a software project, the demand
for tools to estimate this measure is apparent. Additionally,
it is desirable for software reliability estimation to be
iteratively calculated throughout the development process,
rather than after the project has reached the system test
stage or after completion when changes are more costly.
As such, we are developing an open source tool that is
integrated tightly with the developer’s existing
development environment. The prototype tool is called the
“Good Enough” Reliability Tool (GERT). The “good
enough” in the name acknowledges that the reliability
estimates provided by the tool may have larger confidence
bounds than those based on operational profile associated
testing, such as those discussed in Musa [6], but may be
“good enough” to guide the testing process, especially at
the unit level. GERT1 is available as an open source plug-

1 GERT can be obtained from http://gert.sourceforge.net. GERT was a
winner in the International Challenge for Eclipse competition in the
student project category

in under the Common Public License (CPL2) for the open
source Eclipse3 development environment

 GERT provides a means of calculating software
reliability estimates and of quantifying the uncertainty in
the estimate (a.k.a. the confidence interval). The estimate
and the confidence interval is built using the Software
Testing and Reliability Early Warning (STREW) in-
process metric suite [7, 8]. This suite is discussed in
Section 3. Additionally, the tool provides color-coded
feedback on the thoroughness of the testing effort relative
to prior successful projects.

The tool is designed for ease of use. GERT is intended
for development teams that write extensive automated test
cases, as is done with the test-driven development (TDD)
practice [2] which has been recently popularized by the
Extreme Programming [1] software development
methodology. GERT complements the feedback loops
normally created by controlled continuous testing. The tool
combines static source code metrics with dynamic test
coverage information.

The objective of this work is to create and provide an
evaluation of the GERT. We describe the structure and the
capabilities of GERT and report on the use of the tool to
analyze the reliability and testing of four student projects in
a junior/senior software engineering class at North Carolina
State University (NCSU). Our analysis focuses on whether
the information provided by the tool provides the developer
with the appropriate direction for improving the testing
process and, thus, the reliability of the product.

The remainder of this paper is organized as follows.
Section 2 provides background information on existing
reliability tools. Section 3 discusses the metrics that are
collected by the tool. Sections 4 and 5 explain the
reliability estimation model integrated into GERT and the
test quality feedback provided by the tool. The GERT
architecture is discussed in Section 6. Section 7 provides a
sample illustration of use. Class project results are
discussed in Section 8. Finally, we conclude and discuss

2 http://www-124.ibm.com/developerworks/oss/CPLv1.0.htm
3 Eclipse is an open source integrated development environment. For
more information see http://www.eclipse.org

future work in Section 9. Screen shots and comments on
four student projects are provided in the Appendix.

2. Some Existing Tools

 The Statistical Modeling and Estimation of Reliability
Functions for Software (SMERFS) [11] is a menu-driven
tool that estimates reliability of software systems using a
black-box approach. It provides a range of reliability
models, but it assumes that software testing is done using
an operational profile. SMERFS Cubed 4 , the latest
evolution of the tool, is available for the Windows
operating system. This latest version extends the
functionality to support both hardware and systems and has
a graphical user interface.

The Automated Test Analysis for C, or ATAC5, is a
white-box tool that evaluates the efficacy of software tests
using code coverage metrics. The tool, run from the
command line, comes with a specialized compiler
(atacCC) that creates instrumented binaries. The run-time
trace file records block coverage, decision coverage, c-use,
p-use, etc. The tool, through coverage, assesses test
completeness and visually displays lines of code not
exercised by tests, and reduces test set sizes by avoiding
overlap among tests.

Computer-Aided Software Reliability Estimation
(CASRE6) is another tool for black-box software reliability
estimation. The models incorporated in CASRE are to a
large extent the same as those in SMERFS. Neither tool
has models that incorporate test coverage. CASRE is
Windows-based and it has the ability to aggregate results
from several different models into a single reliability
estimate. By taking linear combinations of several
component models and applying specific weights to each,
one can construct more complex models which may
improve predictive reliability estimates. The tool takes
advantage of windowing environments. However, similar
to SMERFS CASRE lacks an automated method for
collecting data. As a result, its use may not scale well in
larger software projects. Furthermore, none of the models
incorporated in CASRE consider test coverage data in their
analysis.

Software Reliability and Estimation Prediction Tool
(SREPT7) can be used to assess the reliability of software
across several stages of its life-cycle [10]. By combining
static complexity metrics for early prediction and failure
data obtained later in the project, SREPT can be used to
estimate reliability as soon as the software’s architecture is
in place. From its results, SREPT can also project release
times based on certain criteria.

4 http://www.slingcode.com/smerfs
5 http://dickey.his.com/atac/atac.html
6 http://www.openchannelsoftware.com/projects/CASRE_3.0/
7 http://www.ee.duke.edu/~kst/software_packages.html

Finally, the Reliability of Basic and Ultra-reliable
Software systems (ROBUST8) [5] is a tool that supports
five different software reliability growth (SRG) models,
one of which involves test coverage. Two of the other four
models can be adapted for use with static metrics for
estimation in the early stages of development. The tool
increases accuracy of the SRG models by supporting any
combination of recalibration, stabilization, and data
smoothing. ROBUST operates on data sets of failure times,
intervals, or coverage. As with most of the other tools, the
data may be displayed in text form to view individual data
points or in graph form based on the active model.

A limiting feature of these popular reliability tools is the
dependency on external data sources, i.e. the tools tend to
be a separate part of the software process and thus may
require a considerable amount of extra work on the part of
end users before they can play a useful part in process
steering. GERT attempts to ameliorate this extra work.

3. Metrics Collected

The GERT estimates are based, in part, on the Software
Testing and Reliability Early Warning (STREW) [7, 8]
metric suite of internal, in-process software metrics. These
metrics are intended for a) early, in-process use and b) to
cross-check each other. GERT currently collects the
following metrics of the STREW Version 1.4 suite (SLOC
= source lines of code):

1. number of test cases / SLOC (R1);
2. number of test cases / number of requirements (R2);
3. test lines of code / SLOC (R3);
4. number of assertions / SLOC (R4);
5. number of test classes / number of source classes

(R5);
6. number of conditionals / SLOC (R6);
7. SLOC / number of source classes (R7);
8. statement coverage (R8); and
9. branch coverage (R9).

 Note that for all metrics above, except R6 and R7, large
values of the metric is potentially good (and may indicate
better quality), while low values are a potential indicator of
poor quality. Initial experiments with the use of STREW
metrics (on student and industrial) programs have been
encouraging. However, not all metrics have consistently
demonstrated a correlation with software reliability. Work
on identification of an optimal set of metrics is still in
progress.

4. Reliability Estimation Model

8 http://www.cs.colostate.edu/testing/robust/

GERT utilizes a multivariate regression model to predict
reliability. The regression equation is constructed with the
reliability (or failure rate) as the dependent variable and the
empirical values of STREW metrics as predictors. Based
on these coefficients the current values of the metrics are
calculated to provide an empirical estimate of the
reliability. Again, for this model to have practical validity,
one has to assume the existence of an extensive and
representative suite of test cases early in the software
development process.

The current version of GERT recognizes test cases and
assertions that are written for use with the JUnit9 testing
framework. For example, Extreme Programmers that
practice TDD may create such a test suite. With TDD,
software engineers develop production code through rapid
iterations of the following steps: (1) writing a small
number of representative automated test cases; (2) running
these unit test cases to ensure they fail (since there is no
code to run yet); (3) implementing code which should
allow the unit test cases to pass; (4) re-running the unit test
cases to ensure they now pass with the new code; (5)
refactoring of the implementation and test code, as
necessary; and (6) periodically re-running all the test cases
in the code base to ensure the new code does not break any
previously-running test cases. Note that in these iterations,
test cases will almost always fail initially because test code
is written prior to implementation code. They are all meant
to ultimately pass. These automated test cases also serve as
regression tests. It is important to note that all discussion
of assertions in this paper are with regards to JUnit
assertions only, not the recently-added support for
assertions in the Java language itself.

The regression equation is built using a set of historical
values of the STREW measures. Ideally, this set of
historical values is collected for each individual engineer or
team to compensate for stylistic differences among
programmers. For example, one developer might write
fewer test cases, each with multiple assertions checking
various conditions. Another developer might test the same
conditions by writing many more test cases, each with only
one assertion. We intend for our tool to provide useful
guidance to each of these developers without prescribing
the style of writing test cases. Through our research, we
also intend to calibrate a default regression equation that
can be used in the absence of historical values.

The confidence interval around the point estimates from
the model is calculated using Equation 1 [9], where Z�/2 is
the upper �/2 quartile of the standard normal distribution, R
is the reliability point estimate, and n is the number of test
cases included in the project.

Confidence interval =
n

RR
zR

)1(
2/

−+ α (1)

9 http://junit.org/

While Equation 1 is a relatively simplistic approach to
the computation of the confidence bounds, we believe that
it is “good enough” given the context in which it is used
and provides for valuable early information.

5. Test Quality Feedback

In addition to providing a reliability estimate, the tool
also provides color-coded feedback on the thoroughness of
the testing effort relative to the historical data from
comparable projects. Color coding alerts developers as to
whether a metric value is within acceptable limits. The
acceptable limit boundary of the metric values for R1-R5
and R8-R9 is calculated using Equation 2 with a negative
sign (i.e. subtraction). The mean of the historical values for
each metric serves as the reference limit. The color-coded
feedback works in reverse for ratios R6 and R7 because the
higher the value the higher the possibility of errors [3].
The color coding scale employed is shown below in Table
1.

Bound(Rx) = �x+/-z�/2*Standard deviation of metric Rx (2)
 n

���������	
 �
 � �

 � �� ����� ��
 � ��
 �������
 �� ��� ���� � �� � ��

Color Range of metric values

RED Rx < Bound(Metric)
ORANGE Bound(Metric) � Rx � �x
GREEN Rx > �x

where �x = Mean of the metric x; Rx is the metric ID. For
example, if the ratio R3 is below the bound, the value will
display in red, indicating that the ratio of test lines of code
to the source lines of code is less than in previously
successful projects and more test cases should be written to
bring the value of the ratio up.

6. GERT Architecture

GERT is currently available as a plug-in to the Eclipse
IDE. The tool is designed so that users can easily migrate
between the GERT perspective and their preferred
development perspective of the Eclipse workbench. Figure
1 illustrates the default GERT architecture. GERT collects
metrics shown in Figure 1 also.

6.1 Operational Modalities

As shown in Figure 2, a software project to be
analyzed is contained in the “Package Explorer” in
Eclipse. Any subset of a software project can be chosen
from this view to take part in the reliability calculations
and test feedback, enabling the tool to isolate reliability
issues down to a specific package or even file. These
subsets of files are selected through a context menu item
as shown on the left side of Figure 2. The portion of the
project chosen to be included in the analysis is shown in a
tree structure on the right hand panel labeled “Reliability
Files.” Modifications to this selection are easily
performed by repeating the process of adding files and
packages or removing files in the “Reliability Files”
panel. Each project maintains a separate list of files that is
persistently preserved between user sessions. Activating a
different project will repopulate the view with files from
the new project that were previously chosen for reliability
testing, if any. Changes to the file selection triggers the
tool to include the metrics of the added source code into
its analysis.

Once the analysis has completed, a results summary
appears in tabular format. Aggregated metrics for the
chosen set of files are displayed foremost in the top table
producing the nine metrics (R1-R9 in Section 3).
Primitive metrics that are collected for the source files
include number of conditionals and statement and branch
coverage. Similarly, the number of test methods and
number of assertions is collected from the test files. Lines
of code and number of classes are summed for both
source and test files. Furthermore, all files are partitioned

into source and test files. Individual metrics for each file
are presented based on the type of the file. GERT enables
the user to export all gathered data to a standard comma
separated values (CSV) file. From this format, creating
custom tables and charts in an external application
becomes trivial.

GERT collects static software metrics efficiently and
reliably by utilizing the features offered by the Java
Development Tools (JDT) framework that comes
packaged with Eclipse. Specifically, the Java Abstract
Syntax Tree (AST) public class of the JDT is employed to
provide syntactic analysis of Java source code. The AST
nodes form parent-child relationships ranging from the
overall class file down to individual tokens in a line of
code. As such, the AST greatly simplifies the task of
counting the number of occurrences of any given Java
structure or element. GERT implements the Visitor design
pattern to traverse the AST of every Java file in the
software project being analyzed. The AST Visitor
recursively traverses the entire tree while keeping track of
how many elements of interest it comes across. For
instance, the AST enables GERT to examine the super
class of each class file it finds. If the super class is defined
by junit.framework.TestCase, then the child is
taken to be a test file and is filed as such. Additionally, all
information is cached as it is processed. After a successful
traversal, the relatively expensive procedure is only
repeated once the file’s last modified time stamp is
updated.

Coverage Tool

Reliability Ratios

JUnit Tests

Files Model Metrics Model

Test Cases / Source Lines

Test Cases / Requirements

Test Lines / Source Lines

Assertions / Source Lines

Test Classes / Source Classes

Conditionals / Source Lines

Relative Class Size

Statement Coverage

Branch Coverage � �� � ������� � ��! �� �
 �� ���

GERT incorporates the open source JCoverage10 tool for
test coverage calculation. The tool determines where class
files are built to instrument these classes with coverage
probes. Instrumentation occurs in the Java bytecode and
tracks execution of individual statements and which
conditional branches are taken during successive runs.
Instrumentation may be removed by recompiling the
project. In turn, GERT scans the project for test cases
written for the JUnit testing framework and calls each in
order. This artificial usage provides the basis on which the
coverage report is generated. The percentage of statements
executed and branches taken in the code are displayed
along side each source file.

The tool also offers the ability to scan each source file to
determine precisely which lines of code were omitted by
calls from the JUnit tests. Once the report is complete,
double clicking on any file in the “Reliability Files” view
will bring the file up in the active editor. If the file did not
attain 100% statement coverage, the lines which were not
executed by the JUnit tests will appear with a marker (see

10 http://jcoverage.org

Figure 6 in the Appendix). We intend to enhance GERT in
the future with an indication of the branches that do not get
executed. Additionally, the row that corresponds to the
active file in the “Reliability Metrics” table will appear
highlighted. The line markers are associated with files
across the entire project scope. The coverage markers will
appear inside the editor for every perspective available in
Eclipse.

6.2 Reliability Results Display

GERT currently supports one reliability estimation
model: the STREW regression. The results of the model are
displayed by a color-coded bar at the top of the screen. In
the bar, the reliability point estimate is shown as a bold
line. The calculated confidence interval around the point
estimate is also displayed. As with all analysis data, the
values that compose the graph are easily exported to a
comma separated values (CSV) file. Moreover, the graph
can be oriented vertically if desired, as shown in Figure 4.
Once the environment is set up, the user can return to the

Color-coded feedback on
quality of testing effort

Files for which reliability
is calculated

Individual source and
test file metrics

Reliability
model results

� �� � ���" ��� � ��!
 ���� ��#
 ��

tool’s perspective at any point in the development cycle
and retrieve updated values for the reliability metrics.

6.3 Configuration

All preferences for the tool are editable through a sub-
page of the Eclipse IDE preference pages. These settings
are retained throughout subsequent sessions as is the layout
of the tool’s different graphical views. The configurations
available consist of defining the parameters for the STREW
model. If the user wishes to employ a different reliability
model, the expression of metrics that determine the point
estimate can be entered among these preferences.
Optionally, the colors used to highlight the “Reliability
Ratios” view and their associated ranges are defined from
the same menu.

6.4 Third Party Software

GERT provides an easy-to-use tool for empirical
reliability estimation and test feedback. Some of GERT’s
functionality is handled by other open source tools that
have been incorporated in GERT’s source code. Currently,
the task of performing coverage analysis and administrating
unit testing is handled by JCoverage and JUnit,
respectively.

• JCoverage, licensed under the GNU General Public
License (GPL11) is an extension to the Apache Ant
build tool.

• JUnit, licensed in similar fashion under the CPL,
provides a framework for running unit testing. GERT
calculates coverage based upon JUnit test cases.

7. Illustration of Use

We have created a sample project which consists of the
JCoverage source code to illustrate the operation of the
tool, as shown in Figure 2. The values displayed are not a
true reflection of the reliability of JCoverage because we do
have any prior data from a comparable tool and are
presented for illustrative purposes only. For this example,
we analyze two packages consisting of both source files
and test files. This is accomplished by selecting both
packages in the “Package Explorer” and bringing up the
context menu for these items and selecting the “Add
Package(s) for Reliability Testing” option. Once the files
contained in these packages appear in the “Reliability
Files” tree, we execute the analysis action and, upon
completion, we refresh the results views. The resulting
output appears automatically, based on the parameters
established in the preference menu. Point estimates,
confidence intervals, and individual file metrics are all
viewable from a single screen. The user may immediately

11 http://www.gnu.org/copyleft/gpl.html

resume development by selecting the appropriate
perspective shortcut, to improve upon the areas whose
estimated reliability was found to be inadequate. For
instance, if the user prefers to develop in the default Java
Perspective, lines inside a source file which is a member of
“Reliability Files” will now be marked as a line which was
not executed by the available JUnit tests.

8. Student Projects

Student projects were analyzed using GERT. The
students were junior/senior computer science students
taking a software engineering class at NCSU. The students
developed an open source Eclipse plug-in in Java that
automated the collection of project metrics. Each project
was developed by a group of four or five students during a
six-week final class project. A total of 22 projects were
submitted; all were used in the analysis. Table 2 below
shows the size of the projects developed.

Table 2: Eclipse project size
Metric Mean Std Dev Max Min
SLOC 1996.9 835.9 3631 617
TLOC 688.7 464.4 2115 156

The plug-ins were tested using a set of 31 black-box test
cases. Twenty six of these were acceptance tests and were
given to the students during development. The actual
reliability of the student programs was approximated by
inputting the results of these black box test cases into the
Nelson model. Using a randomly-chosen set of 18
programs, multiple regression Equation 4 was built.

Reliability Estimate = 0.859 + 0.09459*R1 +
0.01333*R2 - 0.0404*R3 + 1.674*R4 + 0.01242*R5 -
1.222*R6 + 0.000867*R7 (4)

[Note that R8 and R9 (statement and branch coverage) are
not included in this model. When the programs were
analyzed, coverage had not been implemented in GERT.]

 The coefficients of this model were input into GERT to
estimate the four remaining projects (Groups A, N, Q, and
X). The data from these projects is presented in Table 3.
Screen shots of running GERT on these projects can be
found in the appendix. A limitation of this approach is that
we built the regression equation using one set of students
and use this equation for a different set of students. As
discussed above, it is best when the coefficients of the
regression equation are built using an individual’s or a
team’s own historical data.

Table 3 shows the overall comparison between the four
student projects. The foremost eight rows represent the
basic measures, followed by the seven STREW reliability
metrics calculated by GERT. The rearmost six rows show
the lower limit, point estimate, and upper limit calculated
by STREW Reliability Model.

������$ ���% & ������� ����

 ' � �� ��
 � ����(��� ��# ���
 � � ���� � �� ��� �
)�
 ��

 Group A Group N Group Q Group X
source lines of code 969 1191 1236 1385

number of source classes 22 15 21 19

number of conditionals 129 140 143 117

number of requirements 20 20 20 20

test lines of code 350 38 497 1332

number of test classes 10 4 8 8

number of test cases 79 16 45 207

number of assertions 77 25 126 667

number of test cases/source lines of code (R1) 0.082 (R) 0.013 (R) 0.036 (R) 0.149 (R)

number of test cases/number of requirements (R2) 3.950 (G) 0.800 (G) 2.250 (G) 10.350 (G)

test lines of code/source lines of code (R3) 0.361 (Y) 0.032 (R) 0.402 (Y) 0.962 (G)

number of assertions/source lines of code (R4) 0.079 (R) 0.021 (R) 0.102 (R) 0.482 (Y)

number of test classes/number of source classes (R5) 0.455 (Y) 0.267 (R) 0.381 (Y) 0.421 (Y)

number of conditionals/number of source lines of code (R6) 0.133 (R) 0.118 (R) 0.116 (R) 0.084 (R)

number of lines of code/number of classes (R7) 44.045 (G) 79.400 (G) 58.857 (G) 72.895 (G)

STREW Reliability (lower limit) 85.615 63.473 90.237 100.000

STREW Reliability (point estimate) 91.895 83.337 96.122 100.000

STREW Reliability (upper limit) 98.174 100.000 100.000 100.000

Nelson Model (Estimate of Actual Reliability) 70.968 77.419 96.774 93.548

Color-coded feedback is shown in the table as well. In
the seven rows in which STREW reliability metrics are
listed, (R) means that he corresponding ratios displayed in
red in the “Reliability Ratios” view, indicating that the
ratios are less than those in previously successful projects.
Similarly, (G) means the corresponding ratios displayed in
green, indicating that the ratios are more than the mean of
the corresponding metric of previously successful projects.
(Y) displayed in yellow, indicating that the ratios are
between the lower limit and the mean of the corresponding
metric.

For the process of predicting reliability to become a
regular practice of the TDD, tool use must add minimal
overhead. We feel the simplicity of use and clarity of
results are positive attributes of GERT. Developers can
quickly generate new reliability estimates for updated code
to see which metric ratios need improvement. Furthermore,
the comprehensiveness of unit test cases is revealed in the
process.

For the four student projects, the meaning of the actual
results was generally sound. However, in one case, the
STREW model estimated reliability at 100%. In another

case, the estimate was quite different from the actual
reliability. We believe that the limitation may lie in the
experimental structure rather than in the model. The model
was built using data from one set of programmers and used
with a different set of programmers. Continued usage of
the tool by the same individual or group over time will
determine whether or not programming style significantly
influences results.

9. Summary and Future Work

In this paper, we presented the “Good Enough”
Reliability Tool, an open source tool which provides
reliability estimation and test feedback information. The
current version of the tool is appropriate for use by
software engineers who create suites of automated test
cases using the JUnit testing framework. The tool enables
reliability estimates to become part of frequent feedback
loops. Developers, in addition to working towards passing
all tests, can establish goals that lead to source code
containing desirable metric ratios where all color-coded
ratios show up in green.

In future releases of the tool we intend to incorporate the
following features:

• Maintain the collection of historic reliability and
metrics values throughout the software project’s
development life-cycle.

• Build an automatic regression equation calculation
system to (1) estimate the defects/SLOC using
multiple linear regression and (2) estimate the
reliability using a logistic regression equation.

• Automate the operation of the tool so that the tool
runs nightly builds automatically in the background
without using user intervention

• Define extension-points that follow the Eclipse plug-
in framework to allow for additional modular views to
integrate with the existing model and controller.

• Include p-use and c-use of source code as part of the
suite of metrics and incorporate the values in overall
reliability estimates.

The tool is currently being deployed in several industrial
locations to collect these metrics to empirically estimate the
reliability of the software and to validate the STREW
metric suite.

Acknowledgements

We thank Ryan Sturmer, Michael Fogleman, Bob
Hopkins for working on G-Unit, a precursor to GERT. We
acknowledge the open source GNU license of JCoverage
that we adapted and included in GERT. Finally, we thank
IBM for the Eclipse Innovation Award that funded the
initial research.

References

[1] K. Beck, Extreme Programming Explained: Embrace
Change. Reading, Massachusetts: Addison-Wesley, 2000.

[2] K. Beck, Test Driven Development -- by Example. Boston:
Addison Wesley, 2003.

[3] K. El Emam, Benlarbi, S., Goel, N., Rai, S.N., "The
Confounding Effect of Class Size on the Validity of Object-
Oriented Metrics," IEEE Transactions on Software
Engineering, vol. Vol. 27, no. pp. 630 - 650, 2001.

[4] D. Hamlet, Voas J., "Faults on Its Sleeve: Amplifying
Software Reliability Testing," International Symposium on
Software Testing and Analysis, pp.89-98, 1993.

[5] N. Li and Y. Malaiya, "ROBUST: A Next Generation
Software Reliability Engineering Tool," IEEE International
Symposium on Software Reliability Engineering, pp.375-
380, 1995.

[6] J. D. Musa, Software Reliability Engineering. New York:
McGraw-Hill, 1999.

[7] N. Nagappan, Williams, L., Vouk, M.A., "Towards a Metric
Suite for Early Software Reliability Assessment,"
International Symposium on Software Reliability
Engineering, FastAbstract, Denver,CO, pp.238-239, 2003.

[8] N. Nagappan, Williams, L., Vouk, M.A., Osborne, J., "Initial
Results of Using In-Process Testing Metrics to Estimate
Software Reliability," North Carolina State University,
Raleigh TR-2004-5.

[9] NIST/SEMATECH, e-Handbook of Statistical Methods:
http://www.itl.nist.gov/div898/handbook/.

[10] S. Ramani, S. Gokhale, and K. S. Trivedi, "SREPT: Software
Reliability Estimation and Prediction Tool," 10th Intl.
Conference on Modeling Techniques and Tools (Tools '98),
Lecture Notes in Computer Science 1469, Palma de
Mallorca, Spain, pp.27-36, September 1998.

[11] G. E. Stark, "A survey of software reliability measurement
tools," IEEE International Symposium on Software
Reliability, pp.90-97, May 1991.

[12] R. Thayer, Lipow, M., Nelson, E., Software Reliability.
Amsterdam: North-Holland, 1978.

APPENDIX: Example Output from Student Projects

� �� � ���$ ��� � ���
 ���� ��#
 ���
 � �� �
 � � �* �

Table 4: Metric Values for Group A (SLOC = Source Lines of Code)

Qty Test/
 SLOC

Qty Test/
 Qty Req

Tst LOC/
SLOC

Qty Assert/
SLOC

Qty Tst Class/
Qty Src Class

Qty Cond/
SLOC

SLOC/
Qty Classes

0.082 3.950 0.361 0.079 0.455 0.133 44.045

The point estimate calculated by STREW Reliability Model is 91.89%. However, the Nelson model based upon running

the black box functional test cases approximated actual reliability at 71%. We believe this is an anomaly due to the fact that
we build the STREW model with one data from 18 student projects and used the model to predict reliability of a different set
of programmers. Historical values of STREW metrics are dependant upon programming and testing style. The project of
group A is generally well organized with clear package hierarchy. Essentially, the test files contained one assertion for every
test method in the test files. However, three out of seven metrics, R1, R4, and R6 display in red which means more test cases
and assertions should be written to bring the values of the ratios more in line with successful projects.

� �� � ���+��� � ���
 ���� ��#
 ���
 � �� �
 � � �, �

Table 5: Metric Values for Group N (SLOC = Source Lines of Code)

Qty Tst/
 SLOC

Qty Tst/
 Qty Req

Test LOC/
SLOC

Qty Assert/
SLOC

Qty Tst Class/
Qty Src Class

Qty Cond/
SLOC

SLOC/
Qty Classes

0.013 0.800 0.032 0.021 0.267 0.118 79.400

Prior to examining the programs written by group N, we felt the reliability estimate would suffer because the test files in

this project were not well written. There are only four test files and each of them has a very limited number of test methods.
For example, the test file with the most test methods, which is OptionsTest.java, has only six test methods. Also, the numbers
of assertions is quite small in the test files. The results given by the tool are consistent with what we intuitively felt they
should be. Only the number of test cases/number of requirements (R2) and the number of lines of code/number of classes
(R7) display in green. All other metrics display in red. The project has too few test cases and assertions to do well in the
STREW model. As a result, the point estimate calculated by STREW Reliability Model, 82.19 is much lower than that of the
other student projects. Additionally, the confidence interval of the model is much larger compared with the other projects.

 This screen shot also displays the optional vertical orientation of the Reliability Metrics View. This view can be copied to
reports on the reliability estimates of the project.

� �� � ���- ��� � ���
 ���� ��#
 ���
 � �� �
 � � �.��

Table 6: Metric Values Group Q (SLOC = Source Lines of Code)

Qty Tst/
 SLOC

Qty Tst/
 Qty Req

Tst LOC/
SLOC

Qty Assert/
SLOC

Qty Tst Class/
Qty Src Class

Qty Cond/
SLOC

SLOC/
Qty Classes

0.036 2.250 0.402 0.102 0.381 0.116 58.857

The STREW reliability estimate (96%) is very close to the Nelson-calculated actual reliability (97%). Our examination of

the project is that it is well organized. But unlike the project of Group A, several assertions are included in teach test method.
Like the project of group A, the values of R1, R4, and R6 display in red. More test cases and assertions should be written to
bring the values of the ratios up. The values of R3 and R5 display in yellow whereas R2 and R7 display in green.

� �� � ������� � ���
 ���� ��#
 ���
 � �� �
 � � �/�

Table 7: Metric Values for Group X (SLOC = Source Lines of Code)

Qty Tst/
 SLOC

Qty Tst/
 Qty Req

Tst LOC/
SLOC

Qty Assert/
SLOC

Qty Tst Class/
Qty Src Class

Qty Cond/
SLOC

SLOC/
Qty Classes

0.149 10.350 0.962 0.482 0.421 0.084 72.895

Among the four projects that we examined, the test files in this project were the best written. The project contains a larger

number of test methods and many assertions in each test method. The numbers in the test file table of the “Reliability Ratios”
view substantiate our intuition. As we can see, there are a total of 207 test cases and 667 assertions in eight test files, much
more than those of the other projects we had examined above. Consequently, the color-coded feedback shows that the value
of the number of assertions/source lines of code (R4) is yellow, while this metric in all the other projects all display in red. In
addition, R5 displays in yellow as well. Two out of seven metrics, R1 and R6, display in red. R2, R3, and R7 display in
green. GERT shows very high reliability point estimate, 100% by STREW Reliability Model. The high STREW reliability
may be explained by the unusually high number of assertions, which was uncharacteristic of other class members (whose
projects were used to build the model) and might have caused model to overestimate reliability. The actual reliability was
93%.

Referring to the screen shot, Strew.java has been selected. Its row in the metrics table is highlighted, and its source is
displayed in the editor window at the top of the screen with the results of running the coverage module. The screen shot
indicates that the test cases did not execute the first or last clause of the if-else if-else statement.

Coverage markers
indicate omitted lines

