Integrating Pair Programming into a Software Development Process

Laurie Williams
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7534
williams @csc.ncsu.edu

Abstract

Anecdotal and statistical evidence [1-3] indicates that pair programmers -- two programmers
working side-by-side at one computer, collaborating on the same design, algorithm, code or
test -- outperform individual programmers. One of the programmers, the driver, has control of
the keyboard/mouse and actively implements the program. The other programmer, the
observer, continuously observes the work of the driver to identify tactical (syntactic, spelling,
etc.) defects, and also thinks strategically about the direction of the work. On demand, the two
programmers can brainstorm any challenging problem. Because the two programmers
periodically switch roles, they work together as equals to develop software. This practice of
pair programming can be integrated into any software development process. As an example,
this paper describes the changes that were made to the Personal Software Process (PSP) to
leverage the power of two programmers working together, thereby formulating the
Collaborative Software Process (CSP). The paper also discusses the expected results of
incorporating pair programming into a software development process in which traditional,
individual programming is currently used.

1. Introduction

The practice of pair programming is not new. In his 1995 book, “Constantine on
Peopleware,” Larry Constantine reported observing Dynamic Duos at Whitesmiths, Ltd.
producing code faster and more bug-free than ever before [4]. That same year, Jim Coplien
published the “Developing in Pairs” Organizational Pattern [5]. In 1998, Temple University
Professor Nosek reported on his study of 15 full-time, experienced programmers working for 45
minutes on a challenging problem, important to their organization, in their own environment,
and with their own equipment. Results showed that pair programming improved both their
performance and their enjoyment of the problem solving process [1]. In 1999, a larger
experiment at the University of Utah supported these findings [3, 6, 7]. (This experiment will
be discussed in detail below.) Recently, industry use of pair programming is on the rise.

1.1 Industry Use of Pair Programming

While small groups of pair programmers can be found in many companies, both large and
small, the largest known group of pair programmers is those that practice the eXtreme
Programming (XP) methodology. In 1996, XP [8] started evolving. XP was developed initially
by Smalitalk code developer and consultant Kent Beck with authors Ward Cunningham and
Ron Jeffries. XP is a lightweight, yet disciplined, software development methodology. The
methodology’s success rate is so impressive that it has aroused the curiosity of many highly-
respected software engineering researchers and consultants. Although departing significantly
from traditional development practices, anecdotally, XP appears to be very effective.

0-7695-1059-0/01 $10.00 © 2001 IEEE

27

28

Additionally, programmers report that developing with XP practices is much more exciting and
enjoyable than with traditional processes.

XP’s requirements gathering, resource allocation, and design practices are a radical departure
from more traditional methodologies, such as PSP or the Rational Unified Process [9].
Customer requirements are written as fairly informal "User Story" cards, a rough estimate of
required resources is assigned to the cards, these are assigned to a programming pair, and
coding begins. With no formal design procedures or discussions on overall system planning or
architecture, the pair determines which code in the ever-enlarging code base needs to be added
or changed and then does it, without asking anyone “permission.” This practice requires the
use of "Collective Code Ownership" whereby any programming pair can modify or add to any
code in the code base, regardless of the original programmer.

Programming pairs routinely “"refactor” the code base by continuous change and
enhancement. They view the code as the self-evolving design — they do not spend time on a
design document and, therefore, have strict self-documenting code style and comment
guidelines. XP also has particularly thorough testing procedures. Comprehensive test cases are
written and automated prior to actual code changes. The results of running these automated
new tests and previous, regression test cases determine if the change/enhancement to implement
a User Story has been done correctly without harming the implementation of other User Stories.

XP credits much of their success to their use of pair programming by all their programmers,
experts and novices alike. XP advocates pair programming with such conviction that even
prototyping done solo is scrapped and re-written with a partner. Working in pairs, the
engineers perform a continuous code review, noting that it is amazing how many obvious but
unnoticed defects another person at your side notices. Additionally, because no formal
architecture or design is produced, much of this “documentation” lives in the heads of the
programmers. By continuously practicing pair programming and by rotating the partners that
work together daily (or more often), the programmers are able to pass system structure and
system knowledge around the team.

When an important new bit of information is learned by someone on the team, it is like
putting a drop of dye in the water. Because of the pairs switching around all the time, the
information rapidly diffuses throughout the team just as the dye spreads throughout the
pool. Unlike the dye, however, the information becomes richer and more intense as it
spreads and is enriched by the experience and insight of everyone on the team. [8]

Additionally, pairs have been found to be more likely to actually perform some of the less
popular practices of the methodology. “Under stress, people revert. They will skip writing
tests. They will put off refactoring. They will avoid integrating. With your partner watching,
though, chances are that even if you feel like blowing off one of these practices, your partner
won't . . .the chances of ignoring your commitment to the rest of the team is much smaller in
pairs than it is when you are working alone.” [8] (This implicit pressure that pairs put on each
other will be discussed more later in this paper.) Because XP is a lightweight yet disciplined
methodology, pair programming seems the glue that holds it together.

1.2 Experimentation with Pair Programming in the Software Engineering Classroom

In 1999, a senior Software Engineering class at the University of Utah was structured as an
experimental class. The experiment was designed to study the costs and benefits of pair
programming. The experimental class consisted of 41 juniors and seniors. The students
learned of the experiment during the first class. Generally, the students responded very
favorably to being part of an experiment.

‘On the first day of class, the students were asked if they preferred to work collaboratively or

individually, whom they wanted to work with, and whom they did not want to work with.
Thirty-five of the 41 students (85%) indicated a preference for pair programming. (Later, many
of the 85% admitted that they were initially reluctant, but curious, about pair programming.)
Therefore, it must also be noted that the majority of those involved in the study were self-
selected pair programmers. Further study is needed to examine the eventual satisfaction of
programmers who are forced to pair program despite their adamant resistance.

The students were also classified as “High” (top 25%), “Average,” or “Low” (bottom 25%)
academic performers based on their GPA. (The GPA was not self-reported; academic records
were reviewed.) Using this information, the twenty-eight students were then assigned to a
collaborative group and thirteen to an individual group. The GPA was used to ensure the
groups were academically equivalent. The students were assigned to one partner for the entire
semester. The partner assignments ensured there was a sufficient spread of high-high, high-
average, high-low, average-average, average-low, and low-low pair grouping. This was done in
order to study the possible relationship between previous academic performance and successful
collaboration. Of the fourteen collaborative pairs, thirteen pairs were mutually chosen in that
each student had asked to work with their partner. The last pair was assigned because the
students did not express a partner preference. (Note: the students were asked their partner
preference because it is more difficult for students to meet to work on assignments than it is for
programmers to work together in industry. They must balance the workload and timing of other
classes and part-time jobs. It was much more likely they would make the time and effort to
work with those they knew.) '

Students in the collaborative group completed their assignments in pairs using the CSP (a
variant of the PSP, which will be discussed below). Students in the individual group completed
all assignments using a modified version of the PSP. The version of the PSP used by the
students was modified from that defined in [6] in order to parallel the software development
approaches defined in the CSP (i.e. object oriented analysis and design and testing techniques
were incorporated). Therefore, the only difference between the individual and the collaborative
groups was the use of pair programming. All students received instruction in effective pair
programming and were given a paper [10] on strategies for successful collaboration. These
helped prepare them for their collaborative experience.

A Windows NT data collection and analysis web application was used to accurately obtain
data from and provide feedback to the students, as easily as possible for the students. Disney
{11] stresses the importance of such a tool for accurate process data collection.

Significantly, in the experiment, the programs produced by the pairs had about 15% fewer
defects {3] based on the automated test cases run by the teaching staff. (These results are
statistically significant with p < .001.) After an initial adjustment period in the first program
(the “jelling” assignment, which took approximately 10 hours), the pairs spent about 15% more
" working hours in total - or 42.5% fewer elapsed hours - completing their assignments compared
to the individuals. The difference in time the individuals spent on the assignments vs. the time
the pairs spent on the assignments was not statistically significant (p > .38). In summary, the
pairs produced higher quality code in essentially the same amount of time as individuals.

2. An Example Integration: The Collaborative Software Process®™ (CSP™™)

29

30

As was stated earlier, the practice of pair programming can easily be incorporated into any
software development process used in the classroom or in industry. As an example, this paper
will explain specific changes that could be made to the Personal Software Process (PSP) [6] in
order to leverage the power of two programmers working together. The author created the
Collaborative Software Process (CSP) [7] in order to document these changes.

2.1 The Collaborative Software Process (CSP) Overview

The CSP is an extension of the PSP and it relies upon the foundation of the PSP. The CSP is
a defined, repeatable process for two programmers working collaboratively. Each process has a
set of scripts giving specific steps to follow and a set of templates or forms to fill out to ensure
completeness and to collect data for measurement-based feedback. This measurement-based
feedback allows the programmers to measure their work, analyze their problem areas, and set
and make goals. For example, programmers record information about all the defects that they
remove from their programs. They can use summarized feedback on their defect removal to
become more aware of the types of defects they make to prevent repeating these kinds of
defects. Additionally, they can examine trends in their defects per thousand lines of code
(KLOC).

Like the PSP, the CSP follows an evolutionary improvement approach. A student or
professional learning to fully integrate the CSP into their process begins at Level 0 and
progresses to Level 2. Each level incorporates new skills and techniques into their process —
skills and techniques that have proven to improve the quality of the software process and to
improve the estimating accuracy of the engineer. These levels are very briefly defined below.

Level 0—Collaborative Baseline. At Level 0, the engineers use their “natural” process.
The purpose of this level is to provide baseline measurements from which to compare results of
future process improvements. Therefore, the only addition to their “natural” process is to
record time and defect data about their development work.

Level 1—Collaborative Quality Management. At level 1, specific activities to improve the
quality are added to the software engineer’s “natural” process. Engineers perform a CRC card
roleplay and use case analysis as input to a thorough (UML) high-level class diagram.
Semiformal design and code reviews are introduced — though these reviews are greatly
streamlined because pair programming is essentially a continuous code review. Black box and
white box test cases are written early in the development process; the completeness of the set of
test cases is checked against a test coverage checklist. The white box test cases are written and
added to an automated regression test suite prior to writing the actual implementation code.
Once code is actually written, the test cases are run, to ensure that the new function works
properly and that it has not broken anything else.

Level 2—Collaborative Project Management. At level 2, project management activities
are added to the process to aid the software engineer in making and keeping good
commitments. Estimates are made by examining and extrapolating from actual completion
statistics from past projects. Progress is tracked using earned value analysis to ensure the
project is proceeding on schedule. .

The basic evolution of the CSP is summarized in Table 1.

Table 1: CSP levels.

Level Activity
Baseline / Current Process
0 Coding Standard

Size Measurement
Process Improvement Plan
Analysis (Use Cases)
1 Design

Code Review

Design Reviews
Testing/Test Reports
Measurements

Size Estimating

2 Resource Estimating
Task Planning
Schedule Planning

As stated above, in the University of Utah experiment the pair programmers used the CSP in
their development while the individual programmers used a modified version of the PSP (to
mirror the organization and content of the CSP). The pair programmers outperformed the
individual programmers.

2.2 Summary of Process Changes Related to Pair Programming

As was stated, the CSP relies on the foundation of the PSP. However, the CSP reorganizes
and simplifies the PSP and places greater emphasis on testing and object-oriented design
techniques. This paper, however, will discuss the changes made specifically for pair
programming and will not further discuss other differences between the two processes.

Essentially every script, template, and form has been adjusted to incorporate the work of two
and to specifically leverage the power of two working together. Forms are used to collect
process information from the software engineers. The majority of the form changes were made
to allow tracking and analysis (via reports) of when programmers work alone and when they
work in pairs — and what specific development tasks they are performing during this time.
Process scripts enumerate steps that should be performed during the development process.
Script changes were made to give specific instructions on the tasks of the driver and of the
observer and to document that the roles of driver and observer should periodically be switched.
For example, the following is a list of tasks included all Development scripts:

e Implement the design.

o The driver implements the design by typing code via the keyboard.

* The observer watches the driver to ensure the code properly implements the design,
identifying defects whenever necessary and giving suggestions for alternative

implementations. The pair brainstorm on demand.

o Periodically, switch drivers.

Because pair programming is essentially a continuous review, the most radical process
changes are with the design review and code review procedures. These continuous reviews are
often referred to as pair-reviews. The PSP documentation contains a suggested design review
checklist and a suggested code review checklist for software engineers to use when they pause

31

32

to review their own work. In addition to continuous pair-reviews, the CSP also advocates
software engineers pause and review their work. (Other software development processes, such
as XP, might feel the continuous pair-reviews are sufficient and no additional reviews are
necessary. Further experimentation should focus on determining the need for additional
reviews in addition to continuous pair-reviews.) However, the CSP has two design review
checklists and two code review checklists. One version of each checklist is very similar to the
PSP checklists and is for use when software engineers perform work by themselves. The CSP
also has a more simplified version of each checklist.for use when work has been done
collaboratively. The second version of each checklist assumes that the pair has already
removed lower-level tactical defects (i.e. syntax defects, loop structure. Instead, ‘formal’ pair-
reviews focus on higher-level issues. Tables 2 and 3 below show the items that are contained in
the CSP collaborative design and code review checklists. The CSP individual review checklists
contain many more items.

Table 2: Collaborative Design Review Checklists

Purpose To guide you through an effective Design Review
Completeness Ensure that the requirements and specifications are completely and correctly
covered by the design:

¢ All specified outputs are produced

¢ All needed inputs are furnished

e All required includes are stated

Class Design ~ [o All data members are private with public getters/setters where necessary
and prudent

e Data Connectedness: Can you traverse the network of collaborations
between the classes to gather all the information you need to deliver the
services based on a representative set of scenarios?

e Abstraction: Does the name of each class convey its abstractions? Does
the abstraction have a natural meaning and use in the domain?

* Responsibility Alignment: Do the name, main responsibility statement
data and functions in each class align?

Special Cases Check all special cases:

¢ Ensure proper operation with empty, full, minimum, maximum,
negative, and zero values for all variables

e Protect against out-of-limits, overflow, underflow conditions

¢ Ensure “impossible” conditions are absolutely impossible

» Handle all incorrect input conditions

Table 3: Collaborative Code Review Checklist

Purpose To guide you in conducting an effective code review
Complete Verify that the code is a complete and correct implementation of the design.
Standards Ensure the code conforms to the coding standards

Inspections were introduced more than twenty years ago as a cost-effective means of
detecting and removing defects from software. Results [12] from empirical studies consistently
profess the effectiveness of reviews. Even still, most programmers do not find inspections
enjoyable or satisfying. As a result, inspections are often not done if not mandated, and many
inspections are held with unprepared inspectors.

Despite a consistent stream of positive findings over 20 years, industry .adoption of
inspection appears to remain quite low, although no definite data exists. For example, an
informal USENET survey we conducted found that 80% of 90 respondents practiced
inspection irregularly or not at all. [13]

With pair programming, this problem identification occurs on a minute-by-minute basis.
These continual reviews not only outperform formal reviews in their defect removal speed, but
they also eliminate the programmer’s distaste for reviews.

3. Non-Process Related Changes/Results

So far, this paper has discussed explicit process changes to incorporate pair programming.
However, the integration of pair programming will implicitly change aspects of the software
engineering development environment. Through both these implicit and explicit changes, one
could expect to yield superior results (higher quality software in about half the time). These
implicit changes are discussed below.

3.1 Programmer Satisfaction

Many programmers are initially skeptical, even resistant, to programming with a partner. It
takes the conditioned solitary programmer out of their “comfort zone.” Shortly, however, most
programmers grow to prefer pair programming. Ninety-two percent of the students in the
University of Utah experiment said they were more confident in their projects when working
with a partner; 96% of the students said they enjoyed the class work more when working with a
partner.

A programmer comments,

“It is psychologically soothing to be sure that that no major mistakes had been made . . . 1

find it reassuring to know that [partner] is constantly reviewing my code while I drive. |
can be sure | had done a good job if someone else 1 trust had been watching and
approved.”

As opposed to process changes such as implementing formal inspections, pair-programming
is a process change that has been shown to improve quality and cycle time that programmers
actually like to do. If programmers like to do it, it is far less likely that they will ‘forget’ to do
pair programming in times of stress.

3.2 Pair-Pressure

Pair programmers put a positive form of “pair pressure” on each other. The programmers
admit to working harder and smarter on programs because they do not want to let their partner
down. Also, when they meet with their partner they both work very intensively because they
are highly motivated to complete the task at hand during the session. “Two people working
together in a pair treat their shared time as more valuable. They tend to cut phone calls short;
they don't check e-mail messages or favorite Web pages; they don't waste each others time [2).”
As each keeps his or her partner focused and on-task, productivity gains and quality
improvements are realized.

With any software development process there is a constant struggle to get the software
engineers to follow the prescribed process. As discussed above, another benefit of pair pressure
is improved adherence to procedures and standards. Due to human nature, pairs put a positive
form of pressure on each other to follow the prescribed process. As an extreme analogy,

33

34

military research advocates that soldiers are in the presence of another during combat.

A tremendous volume of research indicates that the primary factor that motivates a
soldier to do the things that no sane man wants to do in combat (that is, killing and dying)
is not the force of self preservation but a powerful sense of accountability to his comrades
on the battlefield. . . . Among men who are bonded together so intensely, there is a
powerful process of peer pressure in which the individual cares so deeply about this
comrades and what they think about him that he would rather die than let them down.

(14]

We have observed this same type of bonding and behavior with pair programmers.
Together, pairs more consistently adhere to process standard and, therefore, more produce with
high quality results.

3.3 Problem Solving

Pairs seem better equipped to solve complex problems using techniques referred to as pair-
think and pair-relaying. Pair-think refers to the pair’s enhanced ability to generate and evaluate
alternatives. Each member of the pair approaches the task with their unique background and
problem solving abilities. As a result, together the pairs generate more alternative solutions.
They then, through the process of negotiating which alternative to choose, are able to efficiently
determine how to proceed with a hybrid ‘optimal’ solution based on their joint inputs.

With pair relaying, pairs consistently report that together they can evolve solutions to unruly
or seemingly impossible problems. Pair relaying is a name for the effect of having two people
working to resolve a problem together. Practitioners describe contributing their knowledge to
the best of their abilities, in turn. They share their knowledge and energy in turn, chipping
steadily away at the problem, evolving a solution to the problem. Through this, pairs report that
in their problem solving, they do not spend excessive time lost in a particular problem or fix.

3.4 Pair-Learning

With pair programming, learning between pairs occurs in a dual-apprenticeship mode. The
partners take turns being the teacher and the taught, from moment to moment. Knowledge is
constantly being passed between partners, from tool usage tips (on even just using the mouse),
to programming language rules, design and programming idioms, and overall design skill.
Even unspoken skills and habits cross partners. [15]

Additionally, the continuous reviews of collaborative programming create a unique
educational capability, whereby the pairs are endlessly learning from each other. “The process
of analyzing and critiquing software artifacts produced by others is a potent method for learning
about languages, application domains, and so forth.”[13] Earlier, it was stated that the
continuous reviews of collaborative programming were more effective than traditional review
because of their optimum defect removal efficiency. To further this, the learning that
transcends in these continual reviews prevents future defects from ever occurring — and defect
prevention is more efficient than any form of defect removal. Says Capers Jones, chairman of
Software Productivity Research,

It is an interesting fact that formal design and code inspections, which are currently the
most effective defect removal technique, also have a major role in defect prevention.
Programmers and designers who participate in reviews and inspections tend to avoid
making the mistakes which were noted during the inspection sessions. [16]

Phillip M. Johnson, a professor at the University of Hawaii, refutes traditional inspections
heuristic “Raise issues, don’t resolve them.” He speaks, instead, in favor of the educational
opportunity that abounds in code inspections. “A strong argument can be made that overall
software quality is affected far more profoundly by improvements to developer skills, which
reduces future defect creation, than by simply removing defects from current individual
documents [13].” The continuous reviews of collaborative programming, in which both
partners ceaselessly work to identify and resolve problems, affords both optimum defect
removal efficiency and the development of defect prevention skills.

4. Summary

Anecdotal evidence from industry and statistical evidence from academia support the use of
pair programming for improved software quality and reduced cycle time. Yet, most
documented processes are designed for individual programmers. The explicit changes to
incorporate pair programming into these processes is quite straightforward, as described in the
changes made to the PSP to yield the CSP. These changes involved: 1) updating process
scripts to document the role of the driver and the observer; 2) adapting data collection forms
and analysis reports and 3) altering design and code review procedures. Making these explicit
changes to the process cause several implicit, but beneficial, changes to the development
environment. Some examples of these are greater adherence to procedures, enhanced problem
solving ability, and improved learning.

To augment the anecdotal and statistical support of pair programming, further research need
be done. To date, only (strong) anecdotal evidence has been obtained from professional pair
programmers in industry. Several studies are currently being planned, and we welcome any
additional interested industries to partake in further research. Additionally, an experiment in
Spring 2000 will study student programmers working in teams at North Carolina State
University. Some teams will incorporate pair programming while others will work
traditionally. The experiment will study the effect of pair programming on team coordination
and communication.

References

[1] J. T. Nosek, “The Case for Collaborative Programming,” in Communications of the ACM, vol. March
1998, 1998, pp. 105-108.

21 Wiki, “Programming In Pairs,” in Portland Pattern Repository, vol. June 29, 1999, 1999, pp.
http://c2.com/cgi/wiki?ProgrammingInPairs.

[3] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries, “Strengthening the Case for Pair-Programming,”
in J[EEE Software, vol. 17, 2000.

[4] L. L. Constantine, Constantine on Peopleware. Englewood Cliffs, NJ: Yourdon Press, 1995.

[5] J. O. Coplien, “A Development Process Generative Pattern Language,” in Pattern Languages of Program
Design, James O. Coplien and Douglas C. Schmidt, Ed. Reading, MA: Addison-Wesley, 1995, pp. 183-
237.

[6] W. S. Humphrey, A Discipline for Software Engineering. Reading, Massachusetts: Addison Wesley
Longman, Inc, 1995.

171 L. A. Williams, “The Collaborative Software Process PhD Dissertation,” in Department of Computer
Science. Salt Lake City, UT: University of Utah, 2000.

[8] K. Beck, Extreme Programming Explained: Embrace Change. Reading, Massachusetts: Addison-Wesley,
2000.

9] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process. Reading,

36

[10]

(1

[12]

(13]

[14]

(15]

[16]

(17]

Massachusetts: Addison-Wesley, 1999.

L. A. Williams and R. R. Kessler, “All I Ever Needed to Know About Pair Programming I Learned in
Kindergarten,” in Communications of the ACM, vol. 43, 2000.

A. M. Disney, Johnson, Philip M., “Investigating Data Quality Problems in the PSP (Experience Paper),”
presented at Foundations of Software Engineering, Lake Buena Vista, FL, 1998.

M. E. Fagan, “Advances in software inspections to reduce errors in program development,” IBM Systems
Journal, vol. 15, pp. 182-211, 1976.

P. M. Johnson, “Reengineering Inspection: The Future of Formal Technical Review,” in Communications
of the ACM, vol. 41, 1998, pp. 49-52.

L. C. D. Grossman, On Killing: The Psychological Cost of Learning to Kill in War and Society. New
York: Little, Brown and Company, 1995.

A. Cockburn and L.- Williams, “The Costs and Benefits of Pair Programming,” presented at eXtreme
Programming and Flexible Processes in Software Engineering -- XP2000, Cagliari, Sardinia, Italy, 2000.

C. Jones, Software Quality: Analysis and Guidelines for Success. Boston, MA: International Thomson
Computer Press, 1997.

W. S. Humphrey, Introduction to the Team Software Process. Reading, Massachusetts: Addison Wesley,
2000. : -

