
Assessing Test-Driven Development at IBM

E. Michael Maximilien
IBM Corp. and NCSU

5505 Six Forks Road
Raleigh, NC 27609

maxim@us.ibm.com

Laurie Williams
North Carolina State University

Department of Computer Science
Raleigh, NC 27695-8207

williams@csc.ncsu.edu

Abstract

In a software development group of IBM Retail Store

Solutions, we built a non-trivial software system based on a
stable standard specification using a disciplined, rigorous
unit testing and build approach based on the test-driven
development (TDD) practice. Using this practice, we
reduced our defect rate by about 50 percent compared to a
similar system that was built using an ad-hoc unit testing
approach. The project completed on time with minimal
development productivity impact. Additionally, the suite of
automated unit test cases created via TDD is a reusable
and extendable asset that will continue to improve quality
over the lifetime of the software system. The test suite will
be the basis for quality checks and will serve as a quality
contract between all members of the team.

1 Introduction

IBM Retail Store Solutions (RSS) is located primarily in

Raleigh, North Carolina. As one of the founding members
of the Java for Point of Sale (JavaPOS) specification, IBM
participated in the creation of the standard and specification
with Sun, NCR and Epson. The JavaPOS specification
defines a set of JavaBeans (software services) to allow
access to point of sale (POS) devices (e.g. printers, cash
drawers, magnetic stripe readers, bar code readers or
scanners) in Java applications. The specification defines a
set of properties, methods, and events applicable for each
device class and the semantic model for the behavior of the
devices. Over the past three years, the RSS division has
implemented the JavaPOS specification for a wide array of
devices on various operating systems (e.g. Windows,
Linux, and IBM's own retail operating system 4690-OS1).

Though the development team has a broad experience

1 http://www2.clearlake.ibm.com/store/support/html/driver.htm

with the JavaPOS2 specification and the POS devices, we
have noticed that for each revision of the deliverable, the
defect rate after Functional Verification Test (FVT) was
not being reduced as we had expected. As a result, the
development and management teams were open to new
approaches to development. We proposed a development
practice based on the eXtreme Programming (XP) [1] test-
driven development (TDD) [2] approach. With TDD, all
major public classes of the system have a corresponding
unit test class to test the public interface, that is, the
contract of that class [8] with other classes (e.g. parameters
to method, semantics of method, pre- and post-conditions
to method). This practice was used by the new JavaPOS3
development and test teams. The team was made up of nine
full-time engineers. Five of the engineers were located in
Raleigh (including the team lead); four were located in
Guadalajara, Mexico. Additionally, part-time resources for
project management and for performance were dedicated to
the team.

In this paper, we examine the efficacy of the TDD
approach, to alleviating the recurrent quality and testing
problems, of the new JavaPOS project. The remainder of
this paper is organized as follows. Section 2 provides an
overview of traditional and TDD unit testing techniques.
Section 3 discusses our view of expected gains and
business risks upon transitioning to TDD. Section 4
discusses our experiences with TDD in our software
development organization. Section 5 presents our results
and lessons learned. Finally, Section 6 summarizes our
findings and future work.

2 Unit Testing

This section provides an overview of traditional unit

testing and the emerging test-driven development practice.

2.1 Prior Unit Test Approaches

2 IBM, NCR Epson and Sun http://javapos.com
3 We use “new JavaPOS” for the JavaPOS release where we used

the TDD development process. JavaPOS Legacy is the moniker
we use for the previous releases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The prior approach to unit testing at IBM RSS was an
ad-hoc approach. The developer coded a prototype of the
important classes and then created a design via UML class
and sequence diagrams [6]. We define important classes to
be utility classes, classes which collaborate with other
classes, and classes that are expected to be reused. This
design was then followed by an implementation stage that
sometimes caused design changes, and thus some iteration
between the design and coding phases. Real unit testing
then followed as a post-coding activity. One of the
following unit test approaches was chosen:

• After enough coding was done, an interactive tool
was created by the developer that permitted the
execution of the important classes.

• Unit testing was executed using an interactive
scripting language or tool, such as jython4, which
allows manual interactive exercising of the classes by
creating objects and calling their methods.

• Unit testing was done by the creation of independent
ad-hoc driver classes that test specific important
classes or portions of the system which have clear
external interfaces.

In all cases, the unit test process was not disciplined and
was done as an afterthought. More often than not, no unit
tests were created, especially when the schedule was tight,
the developer got side tracked with problems from previous
projects, or when new requirements that were not clearly
understood surfaced. Most of the unit tests developed were
also thrown away and not executed during the FVT phase
or when a new release of the software was developed.

2.2 Test-Driven Development

With TDD, before writing implementation code, the

developer writes automated unit test cases for the new
functionality they are about to implement. After writing test
cases that generally will not even compile, the developers
write implementation code to pass these test cases. The
developer writes a few test cases, implements the code,
writes a few test cases, implements the code, and so on.
The work is kept within the developer’s intellectual control
because he or she is continuously making small design and
implementation decisions and increasing functionality at a
relatively consistent rate. New functionality is not
considered properly implemented unless these new unit test
cases and every other unit test case written for the code
base run properly.

As an example of how the unit tests are structured is to
consider a typical method that takes one input parameter,
returns an output value, and could throw an exception.
Such a method would then have a unit test for (1) a valid
parameter value which expects a valid return and (2) an
invalid value causing appropriate exception; boundary

4 http://www.jython.org

values are typically selected. The unit test method could be
longer than the method itself. Often the unit tests are not
exhaustive but rather test the typical expected behavior
with valid parameters and a few negative paths.
Furthermore, additional unit test methods are sometimes
added for each method when its behavior is dependent on
the object being in a particular state. In these cases, the
unit test starts with the correct method calls that put the
object in the correct state.

Some professed benefits to TDD are discussed below:
• In any process, there exists a gap between decision

(design developed) and feedback (functionality and
performance obtained by implementing that
design). The success of TDD can be attributed to
reducing that gap, as the fine granular test-then-
code cycle gives constant feedback to the
developer. An often-cited tenet of software
engineering, in concert with the “Cost of Change”
[3], is that the longer a defect remains in a software
system the more difficult and costly it is to remove.
With TDD, defects are identified very quickly and
the source of the defect is more easily determined.

• TDD entices programmers to write code that is
automatically testable, such as having
functions/methods returning a value, which can be
checked against expected results. Benefits of
automated testing include the following: (1)
production of a reliable system, (2) improvement of
the quality of the test effort, (3) reduction of the test
effort and (4) minimization of the schedule [5].

• The TDD test cases create a thorough regression
test bed. By continuously running these automated
test cases, one can easily identify if a new change
breaks anything in the existing system. This test
bed should also allow smooth integration of new
functionality into the code base.

With XP, developers do little or no up-front design
before embarking in tight TDD cycles consisting of test
case generation followed by code implementation.
However, many of the benefits listed above can be realized
in essentially any development process simply by shifting
from unit test after implementing to unit test before
implementing.

3 Assessing Expected Gains and Risks

In our past experiences, the ad-hoc approach to unit

testing usually leads to last minute or even no testing at all.
Therefore, when we set out to build the new
implementation of the JavaPOS services, the management
team was open to a new unit testing practice as long as we
could articulate our expected long term advantages. Since
this was the first time that IBM RSS had taken such an
approach to software development, there were many

unknowns and questions that the management and
development teams wanted answered:

• Defect Rate. How will this rigorous approach affect
the defect rate in the short term (current release) and
the longer term (future releases)?

• Productivity. What is the impact to developer
productivity (lines of code (LOC) per person-
month)?

• Test Frequency. What will be the ratio of interactive
vs. automated tests? How often will each of these
types of test be run?

• Design. Does the use of the TDD practice yield
systems that have a more robust design? We assess
the robustness of design by examining the ease of
handling late requirements and supporting new
devices and services.

• Integration. Does TDD and its resulting automated
regression test assets allow for smoother code
integration?

Many in the development and management team were
concerned that this rigorous approach would impact
productivity so much that we would not be able to keep our
schedule dates. Further, there was some resistance from
the developers at first, since many were not only new to
TDD but also some were somewhat unfamiliar with Java.
All but two of the nine full-time developers were novices to
the JavaPOS specification and the targeted POS devices.
The domain knowledge of the developers had to be built
during the design and development phases.

To alleviate the productivity concerns, we decided to be
very careful in the scheduling phase. Since we had an
existing similar system, we decided to measure the LOC of
the existing system and to extrapolate and predict the LOC
of the new system. We used an average productivity rate
of 400 LOC per person-month as per the finding of an
internal audit of our process by an IBM consultant. This
productivity rate was determined to be justified for our
development team by studying past historical data. This
rate included time for design, unit testing, and code
implementation. This rate is also appropriate for the type of
software that we develop in which essential money [4] is at
risk.

4 IBM RSS Experiences

In the past, unit test was usually an afterthought after

code had been developed and was working. With TDD,
test cases are developed up front as a means to reduce
ambiguity and to validate the requirements, which for the
JavaPOS comes in the form of a full detail standard
specification. We found that such up-front testing drives a
good understanding of the requirements and an up-front
design. In XP projects, such up-front testing proceeds
without any “big design up front,” commonly referred to as

BDUF [1]. However in our system, the requirements were
stable, and we chose to do up-front design via UML class
and sequence diagrams. This design activity was
interspersed with the up-front unit test creation.

After creating a “spike” [1] of the system by
implementing an end-to-end service for one device, each
logical portion of the system was layered and completely
designed using UML class and sequence diagrams. For
each important class, we enforced complete unit testing.
We define complete testing as ensuring that the public
interface and semantics (the behavior of the method as
defined in the JavaPOS specification) of each method were
tested utilizing the JUnit5 unit testing framework. For each
public class, we had an associated public test class; for each
public method in the class we had an associated public test
method in the corresponding unit test class. Our goal was
to achieve 80 percent of the important classes covered by
automated unit testing. By automated we mean requiring
no human interaction and thus unit test that can be batched
and executed automatically. Each design document
included a unit test section that listed all important classes
and the public methods that would be tested. Some unit
tests would also contain methods that tested particular
variations on behavior, e.g. the printer has an asynchronous
printing capability and the regular print methods behave
differently in synchronous vs. asynchronous mode.

 To guarantee that all unit tests would be run by all
members of the team, we decided to set up automated build
and test systems both locally (in Raleigh) and remotely (in
Guadalajara). Daily, these systems would extract all the
code from the library build and run all the unit tests. The
Apache ANT6 build tool was used. After each automated
build/test run, an email was sent to all members of the
teams listing all the tests that successfully ran and any
errors found. This automated build and test served us as a
daily integration and validation for the team. At first this
build test was run multiple times a day locally and
remotely. Eventually, we decided to alternate the build
between locations and to only run the build tests once a
day. Figure 1 summarizes the development and test
process used by the team.

5 http://junit.org
6 Apache Software Foundation http://www.apache.org/jakarta/ant

Figure 1: Summary of development and test process
(UT = Unit Test)

For every project at IBM RSS, various metrics are

collected during the FVT phase to keep track of the test
progress and to predict the start of regression and the end
of the test. We define the start of regression as the date
when 100% of the FVT tests have been attempted. (This
does not imply that the defects from these attempted tests
are all resolved.) We predict the number of new and
changed lines of code in the project and the number of total
defects that will be found during the FVT based on
historical data. From these predictions, a defect and test
progression curve is calculated with weekly points that
forecast the number of executed tests cases and the

expected number of defects for each week of the project.
For the new JavaPOS project, we entered test with 71.4
KLOC of new code and 34 KLOC of JUnit code; the total
predicted defects for our process was 286 defects or 4
errors/KLOC. Generally, new development projects within
RSS are estimated at 8 errors/KLOC; the test team
demonstrated their confidence in the TDD approach by
utilizing a 50% reduction in their estimate.

Another set of data that we collected during the
development phase is the number of KLOC from all
different modules (source and test code) and the number of
JUnit tests for each module. For approximately 71 KLOC,
we wrote approximately 2390 automated unit test cases.
Additionally, over 100 automated JUnit performance test
cases were written.

The new JavaPOS team experienced approximately a
50% reduction in defect density in FVT. Figure 2 displays
the defect density for a comparable JavaPOS legacy
implementation that was recently updated; TDD was not
used. On this project, the realized defect density was
consistently higher than the projected density and averaged
7.0 errors/KLOC. The development and test teams for this
legacy project were fully experienced with the
specification, code and devices (this is the third release of
that project). Comparatively, Figure 3 displays the defect
density for the relatively inexperienced new JavaPOS team
that employed the TDD practice. Our actual defect density
averaged 3.7 errors/KLOC. We attribute this quality
increase to the use of the TDD practice.

Figure 2: FVT Defect Projection - Ad-Hoc Testing Project

Figure 3: FVT Defect Projection - TDD Project

5 Results and Lessons Learned

In this section, we first share the business results from

our adoption of TDD. Next, we share our lessons and
suggestions for team transitioning to TDD. Our business
results are now discussed:
• Defect Rate. With TDD, unit testing actually happens.

In our prior approaches, testing was an afterthought.
With TDD, unit testing is an integral part of code
development. As a result, we achieved a dramatic
50% improvement in the FVT defect rate of our
system.

• Productivity. Because the project is still in the final
phases of regression test, we cannot compute exact
productivity numbers. However, we know the project
is on schedule. We expect our productivity numbers
to be at or slightly below the 400 LOC/person-month
estimate. Other studies have also found a slight
decrease in developer productivity when employing
the TDD practice [7, 9]. We also must attribute some
credit toward our productivity to the new use of
Microsoft Project Central7, which many believe has
improved our project management practices and kept
the developers consistent about making visible
progress on their tasks.

• Test Frequency. We wrote approximately 2500
automated tests and 400 interactive tests. Eighty-six
percent of the tests were automated, exceeding our

7 http://www.microsoft.com/office/project/default.asp

80% target. The interactive tests were rarely run; the
automated tests were run daily.

• Design. We believe that the TDD practice aided us in
producing a product that would more easily
incorporate late changes. A couple of devices (albeit,
not overly complex devices) were added to the
product about two-thirds of the way through the
schedule.

• Integration. In the past, we only integrated code into
the product once we were close to FVT. The daily
integration certainly saved us from late integration
problems. The success (or failure) of the daily
integration served as the heart beat of the project and
minimized risk because problems surfaced much
earlier.

• Morale. The developers are very positive about the
TDD practice and have continued its use.

Additionally we have gained experiences with
transitioning to TDD we wish to share with other teams.
We list these in order of importance.
• Start the TDD from the beginning of project. Set the

expectation that team members that fervently apply
the unit test paradigm may initially appear less
productive or frustrated at the time it takes to create
the unit tests. Assure them that the practice will have
ultimately minimal impact to their productivity.

• For a team new to TDD, introduce automated build
test integration towards the second third of the
development phase—not too early but not too late. If
this is a brand new project, adding the automated
build test towards the second third of the development

schedule allows the team adjusts to and become
familiar with TDD. Prior to the automated build test
integration, each developer should run all the test
cases on their own machine.

• Convince the development team to add new tests
every time a problem is found, no matter when the
problem is found. Thus, at least one new test should
confirm the presence of and removal of each valid,
opened defect. By doing so, the unit test suites
improve during the development and test phases. This
part of the process needs to be communicated early
and enforced by reminders and monitoring of unit test
count.

• Get the test team involved and knowledgeable about
the TDD approach. The test team should not accept
new development release if the unit tests are failing.

• Hold a thorough review of an initial unit test plan,
setting an ambitious goal of having the greatest
number of automated tests, since automated tests can
be easily integrated and run automatically without
necessitating human intervention. We used 80%
automated tests as a minimum goal. We cannot
overemphasize the importance of constantly running
in a daily automatic build; tests run should become the
heartbeat of the system as well as a means to track
progress of the development. This also gives a level
of confidence to the team when new features are
added. If new classes and tests are added and the next
build test is successful, the team can have a higher
confidence in the change.

• Encourage fast unit test execution and efficient unit
test design. Test execution speed is very important
since when all tests are integrated the complete
execution can become quite long for a decent project
and constant test execution. Results are important
early and often, to provide feedback on the current
state of the system. Further, the faster the execution
of the tests the more likely developers themselves will
run the tests without waiting for the automated build
tests results.

• Take all opportunities to encourage development team
to add unit tests to their code. This can be done by
monitoring which subsystems have more unit tests
relative to how big that subsystem is and
acknowledging the developer of the subsystem.

6 Summary and Future Work

The new JavaPOS development team in the IBM Retail

Store Solutions organization transitioned from an ad-hoc to
a TDD unit testing practice. Through the introduction of

this practice the relatively inexperienced team realized
about 50% reduction in FVT defect density when
compared with an experienced team who used an ad-hoc
testing approach for a similar product. They achieved these
results with minimal impact to developer productivity.
Additionally, the suite of automated unit test cases created
via TDD is a reusable and extendable asset that will
continue to improve quality over the lifetime of the
software system. The test suite will also be the basis for
quality checks and will serve as a quality contract between
all members of the team.

7 Acknowledgements

We would like to thank the Raleigh and Guadalajara

teams for an outstanding job executing this new process
and for their trust that this new process of up-front unit
testing would pay off. The results and actual execution of
the ideas came from their hard work. We especially
acknowledge Mike Hyde and Dale Heeks from the FVT
team for creating Figures 2 and 3. We also want to thank
the IBM RSS management teams for their willingness to
try a new approach to development without prior data on
whether this would be effective or not. We also thank the
NCSU Software Engineering reading group for their
comments and review of initial drafts of this paper.
Finally, we want to acknowledge Kent Beck for devising
and documenting the TDD approach and for co-authoring
the JUnit testing framework.

8 References

[1] Beck, K., Extreme Programming Explained: Embrace
Change. Reading, Massachusetts: Addison-Wesley, 2000.

[2] Beck, K., Test Driven Development -- by Example. Boston:
Addison Wesley, 2003.

[3] Boehm, B. W., Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

[4] Cockburn, A., Agile Software Development. Reading,
Massachusetts: Addison Wesley Longman, 2001.

[5] Dustin, E., Rashka, J., and Paul, J., Automated Software
Testing. Reading, Massachusetts: Addison Wesley, 1999.

[6] Fowler, M., UML Distilled. Reading, Massachusetts:
Addison Wesley, 2000.

[7] George, B. and Williams, L., "An Initial Investigation of
Test-Driven Development in Industry," ACM SAC, Mel, FL,
2003.

[8] Meyer, B., "Applying Design by Contract," IEEE Computer,
vol. 25, pp. 40-51, October 1992.

[9] Muller, M. M. and Hagner, O., "Experiment about Test-first
Programming," presented at Conference on Empirical
Assessment in Software Engineering (EASE), 2002.

