
Personality Types, Learning Styles, and an Agile Approach
to Software Engineering Education

Lucas Layman Travis Cornwell Laurie Williams

North Carolina State University, Department of Computer Science
Campus Box 8207, Raleigh, NC 27695

+1-919-513-5082
[lmlayma2, twcornwe]@ncsu.edu, williams@csc.ncsu.edu

ABSTRACT
This paper describes an initiative at North Carolina State
University in which the undergraduate software engineering class
was restructured in layout and in presentation. The change was
made from a lecture-based coursed that followed the waterfall
method to a lab-oriented course emphasizing practical tools and
agile processes. We examine the new course layout from the
perspective of Myers-Briggs personality types and Felder-
Silverman learning styles to discuss how the new software
engineering class format appeals to a wide variety of students.
The new course format resulted in some of the highest student
evaluations in recent course history. It is now the standard for the
undergraduate software engineering course at the university and
has since been used in other North Carolina institutions.

Categories and Subject Descriptors
K.3.2. [Computing Milieux]: Computing and Information
Sciences Education – computer science education

General Terms
Human Factors

Keywords
Software engineering education; agile methods; learning styles;
personality types

1. INTRODUCTION
Historically, the software engineering course at North Carolina
State University (NCSU) was loosely based on the waterfall
software development process. The course had three 50-minute
lectures each week, and a final group project that employed the
waterfall process model. Unfortunately, student evaluation
markings for this course were consistently among the lowest in
the department. Students complained vociferously about both the
course content and the course presentation. In 2003, NCSU
instituted a new approach to teaching undergraduate software
engineering that used agile software development processes and

focused on tools and techniques rather than lecture-based
concepts. This new approach also involved a weekly lab
component that took the place of the third lecture. The new
approach was well-received by students, and the student
evaluation markings were among the highest for the course in
recent history. In this paper, we describe the software
engineering course that has now become standard at NCSU. We
discuss the basic course layout and teaching principles used in
both the lecture sections and in the lab sessions.
To understand the appeal of the new course structure, we examine
our class from the standpoint of Myers-Briggs personality types
[5] and Felder-Silverman learning styles [3]. We provide the
personality type and learning style distributions of the students in
the Fall 2004 undergraduate software engineering class. Each
dimension of the Myers-Briggs and Felder-Silverman scale
requires specific consideration when creating a teaching style that
appeals to as many students as possible. This paper discusses
how a hands-on, collaborative, agile-based approach to teaching
software engineering seems to appeal to a wide variety of student
personality types and learning needs. We supplement our
explanations with student testimony gathered at the end of the
course.
The remainder of the paper is organized as follows: Section 2
discusses related work, and Section 3 presents the course layout.
Sections 4 and 5, respectively, provide a discussion of how this
software engineering course appeals to different Myers-Briggs
personality types and Felder-Silverman learning styles profiles.
We conclude in Section 6.

2. RELATED WORK
This section provides a brief introduction to the Myers-Briggs
personality types and Felder-Silverman learning styles. We also
summarize some related empirical studies.

2.1 Myers-Briggs
The Myers-Briggs personality types [5] have served as a popular
means of characterizing personality traits in both the classroom
and the workplace. A considerable amount of work has been
published on Myers-Briggs personality types (e.g. [4, 6, 7]). The
Myers-Briggs scale has four dimensions:
Introvert-Extravert. Introverts are generally introspective and
are energized by spending time alone, whereas extraverts thrive in
a group setting.
Sensing-Intuition. Sensors prefer information gathered through
experience and are attentive to details, while intuitors prefer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003…$5.00.

abstract concepts and are bored by details, preferring innovative
thoughts instead.

Thinking-Feeling. Thinkers rely on objective rationalization to
make decisions and are considered to be impartial, whereas
feelers are more likely to make subjective decisions based on
social considerations rather than strict logic.

Judging-Perceiving. Judgers are typically orderly people who
prefer rigid structure and planning but may ignore facts that do
not fit their plan or structure, whereas perceivers do little planning
and work spontaneously but are more open to facts that do not
conform to their views.
Myers-Briggs personality may affect student performance in the
engineering classroom. Felder found that, in terms of course
grades, introverts outperformed extraverts, intuitors typically
outperformed sensors (except in hands-on, “real-world” classes),
thinkers outperformed feelers, and judgers typically outperformed
perceivers. These findings are similar to those found in [4, 6].

2.2 Learning styles
The Felder-Silverman learning styles have been used to help
students understand their own learning needs and to help
professors better tailor their courses to different types of students
[3]. The purpose of these learning styles is to help characterize
the way in which students absorb and retain information. The
Felder-Silverman scale has four dimensions:

Active-Reflective. Active learners learn best by experimentation
and working with others, while reflective learners learn more by
thinking things out on their own.

Sensing-Intuitive. The sensing-intuitive dimension is intended to
be the same as in the Myers-Briggs scale.

Visual-Verbal. Visual learners absorb information best through
pictures, graphs, and charts, whereas verbal learners prefer written
or spoken explanations.

Sequential-Global. Sequential students learn in orderly,
incremental steps with one point or fact connecting to the next,
whereas global learners have trouble learning fact-by-fact and
learn in cognitive leaps after accumulating all the facts.
Some work has been done on the learning styles of computer
science students. Thomas, et al. found that reflective learners
typically outperform active learners and verbal learners
outperform visual learners with respect to exam grades and course
grades [8]. Similar course performance records were found by
Allert [1]. [2]

3. COURSE LAYOUT
The overall goal of the software engineering course at NCSU is to
teach students practical techniques and tools that they will
encounter in professional software development. As with many
software engineering courses, the lecture sessions often center on
concepts and theories, such as discussions of software processes
and testing strategies. However, the weekly lab sessions are the
focus of the course wherein the students receive hands-on
experience with the concepts they have been taught in the
classroom. In the lab sessions, students participate in project
planning, learn to use components of the Eclipse IDE1, become

1 www.eclipse.org

familiar with testing tools such as JUnit2, write requirements
documents, and so forth.
During the first nine weeks of the class, the students are given
four homework assignments of one-three weeks each. The first
assignment is to create a personal webpage so that other students
may familiarize themselves with their peers, become familiar with
their schedules, etc. This is important as the students will be
working with each other throughout the semester. Two of the
homework assignments are done in pairs, and generally focus on
understanding and applying a design pattern and a new technique
(such as unit testing or version control) to a problem. The
remaining homework assignment is done alone and follows the
same layout as the paired homework assignments, but also affords
the student the opportunity to compare working alone to working
with a partner. The course also contains a midterm and a final
exam, which are done individually, and test the students’
comprehensive knowledge of the course material
During the last six weeks of the semester, the lab sessions are
reserved for the student teams to work on their group projects,
wherein they must apply all of the tools they have learned
previously. The students are placed in groups of four or five and
are given a requirements specification, access to a version control
system, and any other technologies they may need. Students are
required to build a system according to the specification,
thoroughly test the system, and create user documentation. The
projects require the students to assimilate some external technical
knowledge on their own, manage time schedules, assign tasks,
debug and troubleshoot. The teaching staff’s role during the
project is to answer requirements-related questions, to resolve
technical issues, and to handle the problem of non-participatory
students. The final project is non-trivial, and is meant to cover
the entire scope of the course thus far and requires a significant
number of person-hours to complete. Students often complain
about the amount of work required on the project, but also say
that it is the most enjoyable part of the course. One of the most
important aspects of the project is the required weekly progress.
At the end of each weekly iteration, the student teams meet with
their lab section’s TA and select a set of user stories they will
implement in the coming week. The students are graded on how
much they accomplished on their chosen user stories at the end of
the weekly iteration. This encourages the students to begin work
on the project early and to work consistently, rather than leaving
all of the work until the end.
A final aspect of student grading are peer evaluations. At the end
of each paired homework assignment and twice during the
project, students are required to evaluate their partners using the
PairEval3 system. If a student gives an overall rating of their
partner of five or less, the partner is flagged and the teaching staff
can review the evaluation more carefully. If the comments in the
PairEval system suggest that one partner did not participate in the
homework assignment or project, then the professor will speak
with the students involved to determine if any action needs to be
taken. If, after investigation, the professor determines that a
student made little or no effort on a partnered assignment, he or
she will have their grade reduced accordingly.

2 www.junit.org
3 http://agile.csc.ncsu.edu/wiki/doku.php?id=tools#paireval

4. PERSONALITY TYPES
Instructors must expect to encounter all personality types in their
classrooms. Appealing to each personality type does not
necessarily require a complete rewrite of an instructional
approach, but can help make the class more engaging and
memorable (in a good way) for the students. The Myers-Briggs
personality types for the students in the Fall 2004 NCSU software
engineering class are shown in Table 1. The distributions in
Table 1 are typical of other findings of engineering students in
general and computer science students in particular [2, 4]. One
exception is the sensing-intuition dimension, in which our class
had a high proportion of intuitors whereas other studies have
shown a greater proportion of sensors. We discuss each of the
Myers-Briggs dimensions in turn and how our teaching approach
aligns with the needs of all personality types.

Table 1 – MBTI categorical breakdown

Myers-Briggs Type Abbreviation N %
Extraversion E 31 46.27%
Introversion I 36 53.73%
Sensing S 12 17.91%
Intuition N 55 82.09%
Thinking T 50 74.63%
Feeling F 17 25.37%
Judging J 51 76.12%
Perceiving P 16 23.88%

4.1 Extravert-introvert personalities
Contrary to popular views, there were near equal numbers of
extraverts and introverts in our class. This has several
implications on teaching style. The true defining feature of
extraverts and introverts is how they motivate and recharge
themselves: extraverts find their energy from working in groups,
and introverts find their energy from working alone. A balance of
extraverts and introverts in the classroom motivates a balance of
individual and group work.
Most courses inherently favor introverts because of the focus on
individual study and performance. In our software engineering
course, students are assigned weekly readings from the course
textbook, and one of the homework assignments is done alone.
The midterm and final exams are individual efforts and account
for 45% of the final grade.
We also place a strong emphasis on collaboration in our course.
Two of the three homework assignments are done in pairs, and the
group project is a team effort. Thus, almost 40% of a student’s
total grade is dependent on group work, a proportion almost equal
to that of the individual assignment and exams. The majority of
the students in the class, including introverts, enjoyed the
emphasis on pair programming. One student commented, “My
favorite part about pair programming is that many times when
working solo, I get stuck on the logics of my program, and having
a partner often avoids this.” Another student observed, “Our
team members seemed to communicate better [in pairs] and it
was easier to make design decisions when you had another person
with you at all times.”

4.2 Sensing-intuition
The sensing-intuition dimensions of both the Myers-Briggs
personality types and Felder-Silverman learning styles concern

how people prefer to receive data. Most instructors teach in a
style that suits intuitors [3] by using lectures and presentations to
emphasize concepts, as opposed to factual data. In our course, the
lectures convey ideas such as testing strategies, process models,
and quality assurance approaches. The oral lectures in our class
are supplemented by presentation slides or text written on a
whiteboard.
Sensors can become bored with concept-oriented lectures; they
need to see facts and real world application. An agile process
approach offers an appealing element to sensors: rapid feedback.
Most agile processes are constructed to respond to changes in
requirements, changes in personnel, and changes in technology.
To facilitate change, it is important to have constant feedback on
the development process to assess the project’s current status.
This feedback can take many forms, including daily meetings
with developers, constant test results, and more.
In our class, consistent feedback was facilitated through several
means. Mandatory unit testing and automated acceptance testing
of all assignments and the project was required. These tools
allowed students to see, in graphical representations on the
computer screen, measurements of their testing progress and
thoroughness. One sensing student pointed out, “[JUnit and
acceptance testing were] useful for when we made changes to the
code because we would change a small piece, run the test cases, if
they all passed then we most likely didn’t break anything.”
Another sensing student noted how the acceptance testing “helped
to visualize what the output was supposed to look like.” Almost
all of the sensing students commented in their retrospectives on
the benefits of testing incrementally throughout the project.
During the semester project, another form of feedback provided in
the weekly iteration meetings during the lab sessions. In these
meetings, the student teams filled out a detailed form outlining
their progress and received feedback from their TA. One sensing
student observed, “[Weekly meetings] helped to keep everyone on
pace each week with what needed to be accomplished. This was
probably the most helpful thing, as our group had no last minute
crunch to complete work.” Similarly, another sensing student
stated, “I think the feedback from each iteration was helpful in
deciding if we were on the right track.” Every sensing student in
the class who turned in a retrospective noted the benefits of these
meetings either to assess their progress or to obtain feedback.

4.3 Thinking-feeling
Thinkers are rational and logical in their decision making
processes, feelers make decisions based on intuition and personal
consideration. At first glance, most engineering classrooms
would seem to require a thinker. Most course materials are
presented objectively as matters of fact, e.g. “This is how you
write a test case” or “These are the steps of the waterfall process.”
In many ways, the procedures, facts, and problem solving
strategies of engineering disciplines are ideal for thinkers. In our
course, much of the material is presented in a way that caters to
thinkers. Lectures focus on strategies for solving common
problems (e.g., “these are the steps you take to create a class
diagram”), the rationale behind certain tools and techniques is
discussed (e.g., “code inspections yield a 60% reduction in
maintenance cost”), and exams reward critical thinking and
application of learned techniques.

Appealing to feelers is more of a challenge. Personal
consideration and emphasis on human elements and social
relevance are particularly important to feelers. It is important that
the work they do reaches beyond a simple exercise and will have
impact beyond determining what grade they receive. For the final
project in our software engineering course, we strive to present
the students with a problem that is practical and relevant to them
as computer science students. For this particular class, the
students were tasked to write a bug tracking system that was
integrated into the Eclipse IDE and made use of a remote
database. The Eclipse IDE is a commercially popular tool and
several of the students had used it in various jobs and internships.
Bug tracking is a part of every day life for software developers.
One feeling student commented, “A lot of projects done in school
seem to miss on usefulness. However, right from the get go it was
clear the usefulness and importance of our project. I am so
satisfied with the out come of the project, that if I was working on
something with other people, I would use this [system].” Another
student noted, “I enjoyed the project mainly because I like
programming, but also because I like the idea of working on
something so practical and ‘real-world’ as an Eclipse plug-in.”

4.4 Judging-perceiving
In our class, as is typical with most engineering classrooms,
judgers hold a majority over perceivers. Judgers tend to be
organized, decisive, and they like concise, concrete explanations.
On the other hand, perceivers are flexible, open to change, and are
comfortable with ambiguity.
A well-organized and clearly presented lecture will often contain
the type of information that appeals to judgers. In our class, we
strive to order lectures in a rational manner, with one thought
flowing easily to the next. The course textbook and presentation
slides are organized in assorted lists and tables for clarity. Exam
questions are as concise as possible, and several iterations of an
exam are passed around the teaching staff to disambiguate the text
as much as possible. Similar efforts are made in the specifications
for the homework assignments and the group project. Though,
with the group project in particular, there are inevitably some
clarifications that need to be made to the system requirements. In
general, we strive to make the course as concise and as orderly as
possible.
Appealing to perceivers is more challenging. Course structure
necessitates an orderly, planned syllabus, due dates for homework
assignments, and exam times; the class structure itself is
inflexible. Agile processes can offer to perceivers some measure
of flexibility. In our class, the six week group assignment is
managed on a weekly basis. That is, students evaluate their work
at the end of each week and adjust their schedules accordingly.
The features the students are asked to implement in the group
project are presented as “user stories,” a type of requirement. The
user stories are designed to be as independent as possible of each
other. This minimizes the need for the students to wait on other
functionality to be developed before working on certain items.
By designing for independent user stories and evaluating student
progress on a weekly basis, the student groups can assess the
work that they accomplished in the previous week and make
adjustments as necessary. Some groups abandoned current work
items because they were progressing too slowly, or because the
work was not essential to the finished product. As one perceiving
student noted, “Feedback from the lab TA and, more importantly,

team members at the end of each iteration was most valuable in
making the necessary time and procedural adjustments to better
estimate the amount of work that could actually be completed in
future iterations.” This measure of flexibility and control offered
over the development process can help appeal to the flexibility-
minded perceivers.

5. LEARNING STYLES
The Felder-Silverman learning styles are a way of characterizing
the ways that students absorb and process information. Felder
contends that a misalignment between these learning styles and
the teaching styles of professors are a problem in the classroom
[3]. We discuss each of the learning style dimensions with the
exception of the sensing-intuitive dimension. According to
Felder, this sensing-intuitive dimension is taken from the Myers-
Briggs sensing-intuition dimension and thus we omit it from this
section. The learning style categorical distributions for the
students in our class are presented in Table 2.

Table 2 – LS categorical breakdown

Learning Style Abbreviation N Percentage
Active A 29 43.28%
Reflective R 38 56.72%
Sensing S 38 56.72%
Intuitive U 29 43.28%
Visual V 56 83.58%
Verbal B 11 16.42%
Sequential Q 36 53.73%
Global G 31 46.27%

5.1 Active-reflective
The active-reflective dimension concerns how students process
information. Active learners form thoughts through active
experimentation and application, whereas reflective learners
digest information through introspection and careful thought.
While most lecture-oriented classes may, on the surface, appeal to
the reflective learner, this is not always the case. Like many
lectures-based courses, our software engineering course contains
weekly reading assignments and presentation slides for the
students to review and reflect on their own. However, for the
lectures themselves to be effective, it is necessary to allow the
students to reflect on the material during the lecture. In our class
lectures, there is a break every 10-15 minutes in which the
students are given a small task wherein they must think about the
material that has just been presented to them. These tasks may
simply be to come up with a question about the material or to
complete a short exercise. The students may work on their own
during these small tasks or discuss it with students sitting nearby.
This short break keeps the students engaged and active throughout
the lecture, as opposed to a block 50-minute lecture that may
leave students disinterested or, worse, asleep at the end.
The periodic exercises in the lectures are also beneficial to the
active learners, who are best able to process their knowledge
when experimenting or applying what they have learned. The
appeal to the active learner in our software engineering class lies
in the weekly lab sessions. In these lab sessions, the students
receive training with practical tools that correspond with the class
lectures. For example, students learn testing strategies in the
lecture one week early in the semester. That same week, the

students learn how to use the JUnit testing framework in lab and
apply it to a problem as part of their homework assignments. This
method appeals to students because of the hands-on
experimentation and practical relevance of their lab sessions.

5.2 Visual-verbal
The visual and verbal dimension deals with the channels through
which students perceive information. Visual learners prefer
charts, symbols, pictures, and drawings, whereas verbal learners
prefer written text or speech. Most students are visual learners,
yet most lectures are presented as text slides accompanied by an
instructor’s lecture. The appeal to visual and verbal learners is
largely dependent on presentation and not course framework.
We include pictures and charts in lecture materials when possible
and relevant. For homework assignments and for the group
project, we provide use case diagrams to detail the requirements
specification (when appropriate). Furthermore, students are also
required to draw class diagrams and sequence diagrams for their
homework assignments and for the group project to help
supplement their understanding of the system.

5.3 Sequential-global
The structure of our software engineering course inherently
appeals to the sequential learner, as does the structure of most
engineering courses. Concepts and tools are taught in a logical
progression from one to the next, allowing the students to make
cognitive ties between new material and the material they have
just learned. For example, students in the class learn about
traditional requirements specifications, followed by use cases,
followed by a use case lab, followed by agile requirements
practices, followed by project management, and so forth.
Appealing to global-minded students is more challenging and is
based prominently on the communication skills of the teaching
staff. Global learners need to understand how the current material
relates to their past experiences and prior knowledge so that they
can make large cognitive leaps in understanding. Analogy is a
useful technique to help communicate with global learners. When
speaking about a new technique, concept, or tool, we try to relate
it to something outside of the software engineering classroom.
For example, the act of validating requirements can be likened to
a car inspection, wherein a certain set of criteria has to be met
before the car is legal to drive. Effective comparisons are often
hard to come by, but are very useful in reaching global learners.
Not only will a useful analogy help students to better understand
new material, it can help them to retain the knowledge by aligning
it with a familiar subject.

6. CONCLUSION
We have discussed our course structure and teaching approach to
an undergraduate software engineering class at NCSU. The
combination of lecture and lab work, the use of an agile process
model, and an awareness of the learning needs of different types
of students has helped us to create a successful learning
environment. We believe that we were able to create a better
learning environment for students by instituting a course approach
that appeals to a wide variety of personality types and learning
styles. We have presented our rationale behind this claim and
supplemented it with student testimony. This particular class
marked the second time this pedagogy was used in the software
engineering course at NCSU. The class received some of the

highest student evaluation marks in the recent history of the
course (it should be noted that most of the students also
complained of how much work the class entailed). The student
evaluation ranking also put the software engineering class well
above the department average. The approach to the software
engineering class in this paper is now the standard pedagogy for
all NCSU software engineering classes and has been used at two
additional North Carolina universities.
We are currently investigating the relationships between
personality type, learning styles, and student grades in the
software engineering class. We are also investigating cases where
students consistently received poor grades in the course to
determine what their characteristics are and what can be done to
help them. This research is part of a larger study that aims to
improve the interest and retention of women and minorities in the
IT field by better understanding the learning needs and
confounding factors that cause these students to avoid or leave the
field. It is our hope that a better understanding of the learning
needs of these students will lead to a more effective and engaging
classroom.

7. ACKNOWLEDGEMENTS
This material is based upon the work supported by the National
Science Foundation under the Grant No. 00305917. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

8. REFERENCES
[1] J. Allert, "Learning Style and Factors Contributing to

Success in an Introductory Computer Science Course,"
proceedings of IEEE International Conference on Advanced
Learning Technologies (ICALT '04), Joensuu, Finland, 2004,
pp. 385-389.

[2] L. F. Capretz, "Personality Types in Software Engineering,"
International Journal of Human-Computer Studies, vol. 58,
2003, pp. 207-214.

[3] R. M. Felder and L. K. Silverman, "Learning and Teaching
Styles in Engineering Education," Engineering Education,
vol. 78, 1988, pp. 674-681.

[4] E. S. Godleski, "Learning Style Compatibility of
Engineering Students and Faculty," proceedings of Frontiers
in Education (FIE '84), 1984, pp. 362-364.

[5] G. Lawrence, People Types and Tiger Stripes, 3rd ed, Center
for Applications of Psychological Types, Gainesville, FL,
1994.

[6] M. H. McCaulley, "The MBTI and Individual Pathways in
Engineering Design," Journal of Engineering Education, vol.
80, 1990, pp. 537-542.

[7] A. Thomas, M. R. Benne, M. J. Marr, E. W. Thomas, and R.
M. Hume, "The Evidence Remains Stable: The MBTI
Predicts Attraction and Attrition in an Engineering
Program," Journal of Psychological Type, vol. 55, 2000, pp.
35-42.

[8] L. Thomas, M. Ratcliffe, J. Woodbury, and E. Jarman,
"Learning Styles and Performance in the Introductory
Programming Sequence," proceedings of SIGCSE '02,
Covington, KY, 2002, pp. 33-37.

