

On the Effectiveness of Unit Test Automation at Microsoft

Laurie Williams1, Gunnar Kudrjavets2, and Nachiappan Nagappan2

1Department of Computer Science, North Carolina State University
williams@ncsu.edu

2Microsoft Corporation
{gunnarku, nachin}@microsoft.com

Abstract

Instituting an automated unit testing practice across

a large software development team can be technically
challenging and time consuming. As a result, teams
may question the economic value of instituting such a
practice. One large Microsoft team consisting of 32
developers transitioned from ad hoc and individualized
unit testing practices to the utilization of the NUnit
automated unit testing framework by all members of
the team. These automated unit tests were typically
written by developers after they completed coding
functionality, approximately every two to three days.
After a period of one year of utilizing this automated
unit testing practice on Version 2 of a product, the
team realized a 20.9% decrease in test defects at a cost
of approximately 30% more development time relative
to Version 1 of the product. The product also had a
relative decrease in defects found by customers during
the first two years of field use. Comparatively, other
industrial teams have experienced larger decreases in
defects when automated unit tests are written
iteratively, as is done with the test driven development
practice, for a similar time increase. These results
indicate automated unit testing is beneficial but
additional quality improvements may be realized if the
tests are written iteratively.

1. Introduction

Unit testing1 has been widely used in commercial
software development for decades. But academic
research has produced little empirical evidence via a
large scale industrial case study on the experiences,
costs, and benefits of unit testing. Does automated unit
testing produce higher quality code? How does “test
last” writing of automated unit testing compare with
incremental techniques like test-driven development
[2]? These are all open research for both researchers
and practitioners.

1 The IEEE definition of unit testing is the testing of
individual hardware or software units or groups of
related units [13].

To address these questions and provide such
empirical evidence, in this paper we report on a post
hoc analysis of unit testing performed in a Microsoft
team. In Version 1 of an application, the team had an
ad hoc and individualized unit testing practice. In
Version 2 of the product, the team instituted a more
unified and systematic automated unit testing process.
Version 2 consisted of 350 thousand lines (KLOC) of
new predominantly C# source code and associated
NUnit2 automated tests produced by 32 developers.
Generally unit testing in the context of this paper
consists of white box tests in which the author of the
tests is aware of how the code handles errors, can
inspect the code to verify that the test handles all code
paths, and may test the properties and state of the code.

Our research methodology uses a four-phased
approach. We conducted a post hoc data analysis of the
code, test, bug, and other associated repositories. We
also ran a survey of developers and testers, and the first
author interviewed a random sampling of four
developers and four testers. Finally, the second
author conducted action research as a member of the
development team.

The rest of the paper is organized as follows:
Section 2 provides an overview of prior research on
automated unit testing and test driven development.
Section 3 provides the detail of our case study, and
Section 4 presents our results. Finally, Sections 5 and
6 distill some lessons learned through the use of
automated unit tests and conclude this paper,
respectively.

2. Background and Related Work

 In this section, we provide information on related
work in unit testing and the test-driven development
mode of writing automated unit tests.

2.1 Unit Testing

By definition and in practice [18], unit testing is
done by the developer, not an independent tester or
quality assurance person. Unit testing is based upon a

2 http://www.nunit.org/index.php

structural view into the implementation code. Code
coverage tools can be used to provide the programmer
with insight into which part of the code structure has
been exercised by tests. However, developers often do
not use code coverage information in their
determination that they have tested enough [18, 21] .

In the C# language, developers can automate unit
tests using the Visual Studio or NUnit test framework.
An example NUnit test appears in Figure 1. Central
to unit testing are the assert statements in the figure
which are used to compare actual with expected
results.

/// <summary>
/// Test the basic functionality of
ConvertHexStringToByteArray function.
/// Verify that given the valid input,
function returns expected output.
/// </summary>
public void
TestConvertHexStringToByteArrayBasic1()
{
 byte[] result =
ConvertHexStringToByteArray("080e0d0a");
 Assert.IsNotNull(result);
 Assert.AreEqual(4, result.Length);
 Assert.AreEqual(0x08, result[0]);
 Assert.AreEqual(0x0e, result[1]);
 Assert.AreEqual(0x0d, result[2]);
 Assert.AreEqual(0x0a, result[3]);
}

Figure 1: Example NUnit test

2.2 Test Driven Development

TDD is a practice that has been used sporadically
for decades [7, 14]. With this practice, a software
engineer cycles minute-by-minute between writing
failing automated unit tests and writing implementation
code to pass those tests. In this section, we provide
an overview of TDD research conducted with
industrial teams.

A set of TDD experiments were run with 24
professional programmers at three industrial locations,
John Deere, Rolemodel Software, and Ericsson [8, 9].
One group developed code using the TDD practice
while the other followed a waterfall-like approach.
All programmers practiced pair programming [22],
whereby two programmers worked at one computer,
collaborating on the same algorithm, code, or test.
The experiment’s participants were provided the
requirements for a short program to automate the
scoring of a bowling game in Java [15]. The TDD
teams passed 18% more functional black box test cases
when compared with the control group teams. The
experimental results showed that TDD developers took
more time (16%) than the control group developers.

However, the variance in the performance of the teams
was large and these results are only directional.
Additionally, the control group pairs did not generally
write any worthwhile automated test cases (though
they were instructed to do so), making the comparison
uneven. The lack of automated unit tests by the
control group may reflect developers reduced desire to
write tests once they have completed code and feel a
sense of assurance that the code produced works
properly.

Case studies were conducted with three
development teams at Microsoft (Windows, MSN, and
Visual Studio) developed in C++ and C# and that used
the TDD practice [3, 17]. Table 1 shows a
comparison of the results of these teams relative to a
comparable team in the same organization that did not
use TDD. The TDD teams realized a significant
decrease in defects, from 62% to 91%.

 Table 1: Microsoft TDD case studies

 Windows MSN Visual
Studio

Test LOC 3 /
Source LOC

0.66 0.89 0.35

% block coverage 79% 88% 62%
Development time
(person months)

24 46 20

Team size 2 12 5
Relative to pre-TDD:

Pre-TDD
Defects/LOC

X Y Z

Decrease in
Defects/LOC

.38X .24Y .09Z

Increase in
development time

25-35% 15% 25-30%

A controlled experiment was conducted with 14

voluntary industrial participants [10] in Canada. Half
of the participants used a test-first practice, and half of
these used a test-last practice to develop two small
applications that took 90-100 minutes, on average, to
complete. The research indicated little to no
differences in productivity between the methods, but
that test-first may induce developers to create more
tests and to execute them more frequently.

Another controlled experiment was conducted with
28 practitioners at the Soluziona Software Factory in
Spain [5]. Each practitioner completed one
programming task using the TDD practice and one task
using a test-last practice, each taking approximately
five hours. Their research indicated that TDD
requires more development time, but that the improved

3 LOC = lines of code

quality could offset this initial increase in development
time. Additionally TDD leads developers to design
more precise and accurate test cases.

Finally, an IBM case study [11, 16, 17, 19, 23] was
conducted with a nine to 17 person team located in
North Carolina, USA; Guadalajara, Mexico; and
Martinez, Argentina that had been developing device
drivers for over a decade. They have one legacy
product, written in C, which has undergone seven
releases since late 1998. This legacy product was
used as the baseline in the case study in comparison to
five years and over ten releases of a Java-implemented
product. The team worked from a design and wrote
tests incrementally before or while they wrote code
and, in the process, developed a significant asset of
automated tests. Throughout the five years, the
team’s ratio of test LOC to source LOC varied from
0.55 to 0.75. The block coverage of their automated
unit tests was 95%. The IBM team realized sustained
quality improvement of 40% fewer test defects relative
to a pre-TDD project and consistently had defect
density below industry standards. Additionally, the
team focused on running automated performance tests
throughout development which resulted in the Java
device drivers having significantly better performance
relative to the legacy product written in C.

3. Automated Unit Testing by Microsoft
Team

In this section, we present an overview of the

Microsoft case study. First, we present our research
methodology. We then present contextual
information about the product and the releases under
study, the team, and the automated unit testing practice
used. We complete this section with some limitations
to our empirical approach.

3.1 Research Methodology

The research involves mining the software

repositories (source code, test, and bug), survey
deployment, interviews, and action research. The
second and third authors mined the repositories and to
obtain quantitative metrics, such as lines of source
code, test code and number of defects for each releases.
Additionally, the second author was part of the
development team and could be considered an action
researcher. His knowledge of the daily operations of
the team is shared throughout this paper.

The third author conducted two anonymous surveys
which were administered on an internal Microsoft
survey system. One survey was for the developers
and the other was for the testers. The purpose of the

surveys was to obtain qualitative and quantitative
information about the use of automated testing from
the developer and test team. The developer survey
was offered to 32 developers and answered by 11
(34.4%). The tester survey was offered to 15 testers
and answered by two (13%). Due to the low response
rate, the tester survey data was not analyzed. Finally,
the first author conducted one hour interviews of four
developers and four testers on the team. Survey and
interview protocols are provided in the appendix.

3.2 The Project

We compare the results of two versions, Version 1

(V1) and Version 2 (V2), of a Microsoft application.
During both versions the development was mainly
done in C#, though some smaller, specific pieces
written in C/C++. Version 1 of the product consisted
of 1,000 KLOC and was developed over a period of
three years. Similarly, Version 2 of the product
consisted of 150 KLOC of changed lines of code and
200 KLOC of new lines (resulting in a V2 code base of
1,200 KLOC) developed over a period of two years.
For both releases, we examine a one year period of
development which encompasses design, code
implementation, testing, and stabilization. V1 and V2
are very different. V1 used external components for
performing much functionality, while V2 developers
wrote their own libraries to work at the protocol level.

3.3 Team

The development team was co-located in Redmond,

Washington, USA. During the V1 timeframe 28
developers contributed to the production code. In V2
this number rose to 32. Additionally, approximately
22 testers were on the V1 team, and 28 testers were on
the V2 team. Comparing the two team lists, 14
developers were involved in both V1 and V2, about
50% of the development team.

3.4 Development Practices

In this section, we describe the development
practices for the V1 and V2 teams.

3.4.1. Version 1. The development process was quite
linear. Program management and senior developers
came up with the vision, feature list, and user scenarios
in the form of Microsoft Word documents. Based on
that information, developers wrote design documents
for review. Design documents were published in a
form of Word documents which contained diagrams
describing the architecture and design of different

components. Diagrams were mainly authored in
Microsoft Visio and used Unified Modeling Language
(UML) notation. After the developers’ design
documents were made public to the entire product team
the test team developed corresponding test plans and
conducted test plan reviews. Primarily, developers
participated in design reviews and testers participated
in test plan reviews with minimal involvement of
testers in design reviews and vice-versa. After the
developers’ design documents were reviewed, the
developers began coding and debugging until a
satisfactory level of quality was achieved. This quality
level was based primarily on code review feedback and
individual developer’s gut feeling. Some code was
run through a static analyzer. Some code was
informally inspected by other team members. Then,
functional tests (called build verification tests or BVTs
at Microsoft) were run on the code base which includes
the newly-developed code. The BVTs were run as
both acceptance tests of the newly-completed feature
and as regression tests to check whether the new code
broke existing code. The new code was checked into
the code base when the BVTs pass.

Developers rarely, if ever, wrote any automated test
cases. Those who did kept that code on their own
machine. The majority of tests written in this manner
were one time use to verify certain functionality.

After source code was checked into the source tree,
the test team drove the daily build going forward.
Testing consisted of running manual ad-hoc and
previously-planned testing. The testers planned their
test cases while the developers wrote code. They
based their tests on the feature specification/user
scenarios provided by the product manager. They
discovered additional details necessary for planning
their tests by further discussions with the product
manager and with the developer. They wrote
performance, stress, and security tests.

3.3.2 Version 2. Similar to V1, program
management and senior developers came up with the
vision, feature list, and user scenarios in the form of
Microsoft Word documents. Based on that
information, developers wrote design documents for
review. In the beginning of V2, the practice of
writing NUnit automated unit tests was mandated by
the development manager. These automated unit tests
were called Developer Regression Tests or DRTs.
Similar to V1, some code was run through static
analysis and/or informal code review. New code had
to pass the BVT tests prior to check in. The informal
code review included reviewing associated automated
unit tests. When appropriate, a reviewer may
comment if they thought the developer did not write
sufficient unit tests.

The team did not adopt TDD [2] whereby unit tests
and code are written incrementally on a
minute-by-minute basis. Rather, the team did unit
testing after completing the coding of a requirement.
Most developers reported writing unit tests every two
to three days based upon the code finished in the prior
days. Developers focused their unit tests on testing
the new functionality, including boundary value and
error conditions. Occasionally, developers wrote unit
tests to probe performance or security concerns. Most
developers indicated that they wrote unit tests until
they felt they covered all the necessary scenarios,
including both normal and error conditions. Some
indicated that their unit test writing may be abbreviated
due to time constraints.

Approximately four times the number of automated
unit tests were written for V2 than were written for V1.
As discussed earlier, the automated unit tests for V1
were ad hoc, maintained on the developer’s machine,
and were often run only once. Conversely, the V2
unit tests were maintained with the code base such that
developers could run other developers’ unit tests.
Survey results indicated that most developers ran their
own unit tests at least once per day and ran the unit
tests of other developers at least once per week.

The test line of code to source line of code ratio for
V2 was 0.47 and the statement coverage was 33.4%
This coverage does not include BVTs and other testing
which contributed to a total coverage > 85%.

The testers followed the same process as they did
with V1. However, as will be discussed in Section
4.3, the testers noted that they had to work much
harder to find defects with V2 than they had to with
V1. The testers noted that all V1 tests were run on
the V2 code. Additional tests for new V2
functionality were added to their test set. More so
with V2 than V1, specific security test cases were
planned and executed due to Microsoft’s focus on the
Secure Software Development Lifecycle [12].

3.5 Limitations of Case Study

Formal, controlled experiments, such as those
conducted with students or professionals, over
relatively short periods of time are often viewed as
“research in the small” [6]. These experiments may
suffer from external validity limitations (or perceptions
of such). On the other hand, case studies such as ours
can be viewed as “research in the typical” [6].
However, concerns with case studies involve the
internal validity of the research, or the degree of
confidence and generalization in a cause-effect
relationship between factors of interest and the
observed results [4].

Case studies often cannot yield statistically
significant results due to the lack of random sampling.
Nonetheless, case studies can provide valuable
information on a new technology or practice. By
performing multiple case studies and recording the
context variables of each case study, researchers can
build up knowledge through a family of studies [1]
which examine the efficacy of a software development
practice, such as automated unit testing.

The results presented in this paper are based upon
the work of more than 32 developers and 28 testers
over a period of two years. As a result, the
quantitative results cannot conclusively be attributed to
the use of automated unit testing. On the other hand
the results contribute to the body of knowledge of the
effectiveness and performance of automated unit
testing. Our results, therefore, apply to teams that
follow a similar process to that discussed in Section
3.3.2.

4. Results

In this section, we provide the results of our
analysis of study data. First, we look at the defects of
both releases. Second we provide information about
the perception of utility of unit testing by the
developers and testers. Finally we compare the
results of this teams test-last automated unit testing
practice with the results of TDD studies available in
the literature.

4.1 Defects

For V2, the team experienced a 20.9% percent

decrease in pre-release defects found by the test team
and by internal customers, despite having a significant
amount of code churn and added features. Of these,
as shown in Table 2, the percentage of higher severity
(Severity 1 and 2 combined) defects also declined from
a total of 65.3% of total defects to 56.9% of total
defects. Additionally, as discussed in Section 4.2 and
4.3, the developers and testers note differences in the
kinds of defects found in V1 versus V2. Due to the
proprietary nature of the system we do not provide
absolute number of defects.

Table 2: Defect Severity Distribution

Defect Severity Version 1 (%) Version 2 (%)
Severity 1 15.5% 16.8%
Severity 2 49.8% 40.1%
Severity 3 28.7% 18.8%
Severity 4 6.0% 3.4%

Field quality also improved. Product statistics
indicate that the quantity of defects found on the
product during the first two years increased by a factor
of 2.9. However, the customer base for the product
increased by at least a factor of 10. Such a large
increase in customers would be expected to cause
significantly more defects because the larger customer
base is likely to use the product in a wider variety of
ways, executing different areas of the code base. We
therefore view the data as indicating a relative decrease
in customer-reported failures.

4.2 Developer Perception

Increased quality was achieved. In addition to the

quantitative results provided in Section 4.1, the
developers sensed their quality improvement based
upon their interactions with the test team. The
developers did not maintain accurate effort estimate to
gauge the impact (if any) on productivity. Hence, on
the survey and in the interviews we asked the
developers for their perception of how much overall
time it took to write the unit tests. Of the eleven
developers that answered this question and four
developers’ interview, responses ranged from 10% to
200%. The median and mode responses were 30%.
An increase in quality can pay for moderate
productivity losses. Specifically, the developers
noted that they spent less time fixing defects found by
testers particularly in the “stabilization phase.”
During stabilization, no new feature gets developed.
The entire focus is on fixing the bugs, ensuring
functional correctness, making test cases pass, and
gradually increasing the product quality with
controlled amount of code changes.

Figure 2 illustrates survey results that provide
insight into the developers’ perceptions on the value of
automated unit testing. Figure 2 provides the
questions in descending order of positive feeling by the
developers. The developers have the highest degree of
positive perception towards writing unit tests to
execute a code fix once a defect is found; and about the
fact that writing unit tests help them write higher
quality code. The developers also felt that writing
unit tests helped them write solid code from the start.
The developers echoed this sentiment in the interviews
by stating that writing automated unit tests had
increased their awareness for implementing code for
error conditions and for handling boundary cases
correctly. The majority of developers felt positive
that unit tests help them understand the code when they
“inherit” it from others or when they need to debug the
code. Only 40% of developers felt that defects were
more likely to be found in places that have no unit
tests.

Figure 2: Developer Perception

The developer interviews provided additional

insights into their perceptions. In general, the
developers feel that unit testing was worth their time
and that it helped them to catch the “low hanging
bugs” before being tested by the test team. They also
felt more comfortable modifying other developer’s
code and refactoring due to the presence of automated
unit tests. The developers felt that the testers were
finding more complex defects in V2 than in V1, so the
20% decrease in defects was accompanied by the
perception that test was able to do a better job of
finding defects customers would find.

4.3 Tester Perception

In the interviews, the testers unanimously noted that

the code delivered to them was of higher quality and
that they had to work harder to find defects. Some
verbatim comments from the interviews were as
follows:

Bugs used to come “for free.”
It’s harder to find bugs. Now, all the obvious bugs

are gone.
Ad hoc testing is not as easy as it used to be.
The testers noted that they were able to get more

sophisticated and realistic with their testing. They
still found defects. However they felt, given their
normal time constraints, they were more effective as
finding the more comprehensive defects that would

have been discovered by customers rather than sticking
to an isolated area of new functionality.
4.3 Comparison with Test-Driven Development

The team discussed in this case study realized a

20.9% decrease in test defects in V2 in which they
wrote automated unit tests, relative to V1 which did
not have automated unit tests. From V1 to V2,
product quality improved which the team attributes to
the introduction of automated unit tests into their
process.

A comparison of case studies of TDD teams, as
reported in Section 2, indicates that additional quality
improvements may be gained by writing unit tests
more incrementally as is done with TDD. The TDD
teams had 62% to 91% fewer defects. The
incremental nature of writing unit tests via TDD may
cause teams to write more tests. The TDD teams had
a higher test LOC to source LOC ratio and higher test
coverage. These results are consistent with a
controlled case study conducted in Finland of three
nine-week projects [20]. Results of this case study
indicated that test coverage was higher when tests were
written incrementally before writing code.

5. Lessons Learned

In addition to the empirical data provided in Section
4, we share some suggestions for other teams

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

When a bug is found in the code, it is 
usually in places that have no unit tests. 

Unit tests help me debug when I find a 
problem. 

When I inherit code in the team, having 
unit tests helps me to understand the 

code beHer. 

Unit tests help me write solid code from 
the start. 

Overall, unit tests help me produce 
higher quality code. 

When a bug is found in my code, wriKng 
a unit test that covers my fix is useful. 

Developer Survey 

Strongly agree 

Agree 

Neutral 

Disagree 

Strongly disagree 

considering transitioning to the use of automated unit
testing:

o Management support for unit testing is necessary.

Without the leadership realizing the benefits of unit
tests and supporting it, the efforts will most likely
die after a couple of months if supported only by a
few of the enthusiasts.

o There needs to a single tool mentality across the
entire product team. The situation where one team
uses NUnit, second team some other tool, and a
third team is starting to write their own test harness,
will not pay off. The “enforcement” of a single
tool is enabled through a tool such as NUnit which
can be run and monitored as a part of the build
process.

o The time for developing unit tests needs to be
factored into the development schedule. The entire
product team must understand that development
may take longer, but the quality will be higher and
in the end the final result will be better.

o Unit tests need to be considered as part of the
product code, i.e., they need to evolve in parallel
with other pieces of the product, their code quality
needs to the same as product code quality.

o Testability of the system should be considered as
part of architecture and design to understand how it
can impact the tests, test effort and effectiveness of
the testing process.

o Unit testing coverage needs to be measured. The
quantity of test cases is a bad measurement. More
reliable is some form of code coverage (class,
function, block etc.). Those measurements need to
be communicated to the team and be very visible.

o A simple team rule that was used in the Microsoft
team: before checking in a change to the code base,
all the unit tests are run and verified that all of them
pass. Following this rule made a significant
difference in the team’s ability to prevent bugs from
escaping.

o Occasionally some amount of root cause analysis
needs to be performed on all the bugs in the product
to determine if these bugs can be prevented by
writing appropriate unit tests. For example: if
public APIs have bugs for not checking parameters
then it makes sense to invest some effort into
developing a comprehensive unit test suite for all the
public APIs.

o The unit testing suite must be open for contributions
by both development and test teams. Team
members must not feel that unit testing is only the
developer's game. Anyone who can write a test case
which verifies some aspect of the system, should be
allowed to add it to the suite.

o Execution of the unit test suite should be easy. If it
is not easy then people might not be motivated to
run it. The execution time of the test suite also needs
to be monitored carefully and made sure that it stays
short (for example in the Microsoft case the tests ran
in less than ten minutes).

6. Summary

One large Microsoft team consisting of 32
developers transitioned from ad hoc and individualized
unit testing practices to the utilization of the NUnit
automated unit testing framework by all members of
the team. These automated unit tests were typically
written by developers after they completed coding
functionality, approximately every two to three days.
The tests were daily by the developers and run nightly
as part of the build process. Developers who did not
include unit tests were prompted to do so by peer code
reviewers. The software developers felt positive
about their use of automated unit testing via the NUnit
framework. Testers indicated their work change
dramatically because the “easy” defects were found by
the developers or were prevented due to the presence
of automated unit tests. The test cases needed to be
more complex for defects to be found.

After a period of one year of utilizing this
automated unit testing practice on Version 2 of a
product, the team realized a 20.9% decrease in test
defects. Additionally, customer-reported defects
during the first two years of field use increased by
2.9X while the customer base increased by 10X,
indicating a relative decrease in customer-reported
defects. This quality increase came at a cost of
approximately 30% more development time.
Comparatively, other teams at Microsoft and IBM have
realized larger decreases in defects (62% to 91%)
when automated unit tests are written incrementally
with TDD, for a similar time increase. The TDD
teams had a higher test LOC to source LOC ratio and
higher test coverage. These results indicate
automated unit testing is beneficial. However,
increased quality improvements may result if the unit
tests are written more incrementally.

7. Acknowledgements

We thank the Microsoft developers and testers who

participated in this case study.

8. References

[1] V. R. Basili, F. Shull, and F. Lanubile, "Building
Knowledge Through Families of Experiments," IEEE
Transactions on Software Engineering, vol. 25, no. 4, pp.
456 - 473, 1999.
[2] K. Beck, Test Driven Development -- by Example.
Boston: Addison Wesley, 2003.
[3] T. Bhat and N. Nagappan, "Evaluating the efficacy of
test-driven development: industrial case studies," in
ACM/IEEE international symposium on International
symposium on empirical software engineering, Rio de
Janeiro, Brazil, 2006, pp. 356 - 363
[4] D. T. Campbell and J. C. Stanley, Experimental and
Quasi-Experimental Design for Research. Boston: Houghton
Mifflin Co., 1963.
[5] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C.
A. Visaggio, "Evaluating Advantages of Test Driven
Development: a Controlled Experiment with
Professionals," in International Symposium on Empirical
Software Engineering (ISESE) 2006, Rio de Jaiero, Brazil,
2006, pp. 364-371.
[6] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach: Brooks/Cole, 1998.
[7] D. Gelperin and W. Hetzel, "Software Quality
Engineering," in Fourth International Conference on
Software Testing, Washington, DC, June 1987.
[8] B. George, "Analysis and Quantification of Test
Driven Development Approach MS Thesis," in Computer
Science Raleigh, NC: North Carolina State University, 2002.
[9] B. George and L. Williams, "An Initial Investigation
of Test-Driven Development in Industry," in ACM
Symposium on Applied Computing, Melbourne, FL, 2003, pp.
1135-1139.
[10] A. Geras, M. Smith, and J. Miller, "A Prototype
Empirical Evaluation of Test Driven Development," in
International Symposium on Software Metrics (METRICS),
Chicago, IL, 2004, pp. 405 - 416.
[11] C.-w. Ho, M. J. Johnson, L. Williams, and E. M.
Maximilien, "On Agile Performance Requirements
Specification and Testing," in Agile 2006, Minneapolis, MN,
2006, pp. 47-52.
[12] M. Howard and S. Lipner, The Security Development
Lifecycle. Redmond, WA: Microsoft Press, 2006.
[13] IEEE, "IEEE Standard 610.12-1990, IEEE Standard
Glossary of Software Engineering Terminology," 1990.
[14] C. Larman and V. Basili, "A History of Iterative and
Incremental Development," IEEE Computer, vol. 36, no. 6,
pp. 47-56, 2003.
[15] R. C. Martin and R. S. Koss, "Engineer Notebook:
An Extreme Programming Episode,"
http://www.objectmentor.com/resources/articles/xpepisode.ht
m, no. 2001.
[16] E. M. Maximilien and L. Williams, "Assessing
Test-driven Development at IBM," in International
Conference of Software Engineering, Portland, OR, 2003, pp.
564-569.
[17] N. Nagappan, E. M. Maximilien, T. Bhat, and L.
Williams, "Realizing Quality Improvement Through Test
Driven Development: Results and Experiences of Four
Industrial Teams," Empirical Software Engineering, vol. 13,
no. 3, pp. 289-302, June 2008.

[18] P. Runeson, "A Survey of Unit Testing Practices,"
IEEE Software, no. pp. 22-29, July/Aug 2006.
[19] J. Sanchez, L. Williams, and M. Maximilien, "A
Longitudinal Study of the Test-driven Development Practice
in Industry," in Agile 2007, Washington, DC, pp. 5-14.
[20] M. Siniaalto and P. Abrahamsson, "A Comparative
Case Study on the Impact of Test-Driven Development on
Program Design and Test Coverage," in International
Symposium on Empirical Software Engineering and
Measurement, Rio de Janiero, Brazil, pp. pp. 275-284.
[21] B. Smith and L. Williams, "A Survey on Code
Coverage as a Stopping Criterion for Unit Testing," North
Carolina State University Technical Report TR-2008-22,
2008.
[22] L. Williams and R. Kessler, Pair Programming
Illuminated. Reading, Massachusetts: Addison Wesley, 2003.
[23] L. Williams, E. M. Maximilien, and M. Vouk,
"Test-Driven Development as a Defect-Reduction Practice,"
in IEEE International Symposium on Software Reliability
Engineering, Denver, CO, 2003, pp. 34-45.

Appendix

Here we provide the questions asked of the
developers and testers in our surveys.

A.1 Developer Survey

1. When you develop code, do you work from a
design document?
o Yes
o No

2. If you use a design document, is it a high level
design document?
o Yes
o No

3. Approximately how many lines of code (LOC) do
you write before you start writing DRTx/unit tests for
it? [open ended]
o The structure of the code

4. Approximately what percentage of your unit tests
are automated? [open ended]
5. What is the typical source lines of code to test
lines of code ration for your code? For example, 0.3
would mean that for 100 lines of source code you have
30 lines of test code. [open ended]
6. Which of these do you think about in your unit
tests? (check all that apply)
o Security
o Reliability
o Functionality
o Performance
o Other

7. What stopping criteria do you use to stop writing
unit tests? [open ended]

8. How often do you run your unit tests per week?
[open ended]
9. Do you run unit tests from other
developers/testers?
o Yes
o No

10. Overall, how much time do you feel writing unit
tests adds to your development time? [open ended]
Note: Six additional questions on developer
perception are presented in Section 4.2.

A.2 Developer Interview Prototcol

1. When you develop code, do you work from a

design document? If so, can you tell me the
form of that document – for example is it high or
low level design?

2. Please explain your process when you write code.
3. Depending upon the answer to #2, when do you

write unit tests, before you write the code, as you
write the code, or after you finish some code? If
you write unit tests after you finish writing code,
how much code to you finish before you write
some tests?

4. Do you automate your unit tests? If so, what
technology do you use to automate your tests?

5. On average, about how many lines of code is a
typical unit test? About how many methods in
the source code are typically executed with each
unit test?

6. What do you think about when you write unit
tests? (e.g. the structure of the code, the
requirement . . .) Based on answer – probe about
whether the unit tests are really white box-ish or
black box-ish.

7. Do you ever unit test for a non-functional
requirement, such as security or performance? If
so, how do you go about doing that?

8. How do you decide when you have written enough
unit tests?

9. How often do you run your own unit tests?
10. Do you ever run the unit tests from others in our

team? The whole team or part of the team? How
often?

11. When you have turned your code over to the
testing group, and the testers find a problem with
your code, do you ever go back and write a unit
test to reveal that bug they find? If yes, do you
find this useful?

12. Have you ever inherited code from another team
member that has had unit tests? Does it help you
to learn the code when it has unit tests?

13. How helpful is your bank of unit tests for
regression testing? Do you find it to be a safety

net – do you feel more courageous when you make
a change that the unit tests will tell you if you
screwed something up with the change?

14. Do you think unit test helps you write more solid
code from the start? Why or why not?

15. Do you think unit tests help you to debug when
you do find a problem? Why or why not?

16. Overall, do you think writing unit tests helps you
produce a higher quality product? Why or why
not?

17. Overall, how much time do you feel writing unit
tests adds to your development time?

18. When yvou are pressured for time, do you think
you write less unit tests?

19. Do you ever pair program as you write code?
Why or why not?

A.3 Tester Interview Protocol

1. Can you tell me about the types of tests you write

(e.g. is it integration testing, are they functional in
nature, test a specific type of non-functional
requirement, test the system as a whole in a typical
customer environment)?

2. What do you base your test cases on (e.g. a
requirements document, conversations with the
developer, conversations with a requirements
analyst, conversations with a customer)?

3. When in the development process do you write
these tests?

4. How do you decide when you have written enough
tests?

5. Do you test for a non-functional requirement, such
as security or performance? If so, how do you go
about doing that?

6. Do you use these test cases for regression testing?
Can you tell me about your regression testing
process?

7. Can you tell me about the unit testing practices of
the developers you work with?

8. Do you think unit test helps them write more solid
code from the start? Do you feel a difference
when you accept code with good unit tests into
your process? Was it harder to find defects?
[How did that make you feel?] Why or why not?

9. Is there any way to tell how many test cases your
team ran in V1? In V2?

10. Do you think you found more or less bugs in V2
than V1? Do you think you found different types
of defects in V2 than V1? How so?

11. Overall, do you think when the developers write
unit tests the team ultimately produces a higher
quality product? Why or why not?

