Session 12a4

“If This Is What It} Really Like, Maybe I Better Major in English”:
Integrating Realism into a Sophomore Software Engineering Course

Robert R. Kessler
Computer Science
University of Utah
Salt Lake City, UT 84112
kessler@cs.utah.edy

Abstract- In the Fall 1998, our sophomore Compuicr
Secience students took a new course called 'Seftware
Practice.” At this early stage in their academic career, the
course gave them practical, realistic exposure to the process
of creating large sofiware systems in teams. Their previous
CS1/CS2 experience focused on the development of C++
language proficiency skills on the Unix platform, with short,
programming-in-the-small assignments reinforcing the
“skill of the week.” Much to the students’ periodic
frustration and anguish, the Software Practice class differed
in most every way — having one, programming-in-the-large,
Jull semester project on the Windows NT/Visual C+-+
platform that often forced them to independently research
new programming technigues. Course evaluations indicate
that the students found the course, with its stark view into
the realism of software development, enlightening, highly
valuable and fun.

History and Introduction

In the Fall Semester of 1998, we presented to sephomore
students a new class ‘Sofiware Practice.” The class was

intentionally developed and sheduled early in the

sophomore year in order to give students earlier exposure to
Software Dngineering and insight into the realities of
software development. The textbook for the class was Code
Complete [1]. The text, lcctures, and assignmetts

emphasized using good coding practices and style (see
www.cs.utah.edu/classes/cs3500 for all of the course

materials).

The class grew out of a curriculum change that we
started in the fall of 199 (see www.cs.utah.edu/~cs451/ for
the 1997 version of the fall quarter of the class). At that
time, we added software engineering concepts such as
object-oriented analysis and design, testing, and teambased
develpment to the yearlong senior software laboratory
class. Previously, there had been very limited exposure to
software engineering in the curriculum. In addition, we used
a newly constructed lab of PCs running Windows NT
instead of our traditional UNIX hb. The domain for the
class project was the control of physical devices constructed
out of Lego and fischertechnik kits. The students built line
following vechicles, a scanner, and eventually a very large,
simulated manufacturing system. This diagram slows the

0-7803-5643-8/99/$10.00 © 1999 IEEE

Laurie A. Williams

Computer Science

University of Utah
Salt Lake City, UT 84112

Iwilliam(@cs.utah.edu

Lego scanner and the results of the scan (after 1.5 hours— it
was very SLOW).

The class met many of the goals that we had outlined,
but scemed to have very polarized reactions from the
students. One set of students felt that the class was exatly
the kind of material that they needed to learn {in fact, several
were able to confidently answer job interview questions
hased on what they lcarned in the c¢lass). Their main
criticism was that they felt that they wished that they had
been exposed to bhe material much cariier, so they could
work on applying the skills during their academic careers

November 10 - 13, 1999 San Juan, Puerto Rico

20" ASEE/IERE Frontiers in Education Conference
12a4-12

instead of being thrown immediately inte the working
environment with only minimal experience. The other set of
students {a much smaller set) disliked the clss all together.
Their main reason was that they felt that they already knew
how to program and thus learning structured methods for
requircments analysis, design, and testing was a complete
waste of time. They already had developed skills (albeit
unstruciured) and processes te perform the tasks,

The conclusion drawn from these two observations was
that the class should be earlier in their academic career. We
believed that it was important to provide them these skills
earlier, before they became lockedinto their own bad habits.
Finally, the University of Utah was forced to convert to
semesters, We took this as an opportunity to make a
substantial curriculum change and created "Soflware
Practice" for sophomores. Previous to this change, the
students got very limited exposure to software engineering
concepts and experiences uintil their senior year,

Two main challenges surfaced in the design and
implementation of the new class, The first wag the skill
level of the students, and the second was howone teaches
programming style. The first ways a problem because our
goal was (o create a real enough set of cxercises to feel that
the students really were experiencing the "real world" of
software development. This, however, led us to discover
unexpected holes in their knowledge. For example, the
concepts of virtual functions, dynamic [ink environments,
and even parsers were all foreign to the students. Our
solution was to have ondemand minitutorials on the subject
and then move on to the task at haal.

The second problem, involving teaching
programming style, was solved by using two techniques and
the cxcellent book, Code Complete {1]. Each week, the
students read a set of chapters talking about style issues. Tn
a following dass, we discussed in a question/answer format
the positives and negatives of each style issue. Then we
would take some source code, analyze it and try to improve
it to meet the style guidelines that we had just encountered
along with those issues that we had covered earlier.
Additionally, the ParaSolt CodeWizard tool was used to
identify style problems in cade. Use of this tool is discussed
betow,

“Will he ever get over this hangup with
Lisp?”?

As one would expect in this kind of class, there were a lbof
programming assignments, We ended up with nine
assignments over the course of the semester. Beginning
with the secend assignment, each built on previous
assigninents, incrementally developing a very functional
Lisp interpreter in C++. The building « the Lisp interpreter
via these assignments is summarized in Appendix A.

The semester-long, programmingin-the-large project
was onc ol the first big difference from past classes, where

0-7803-5643-8/99/5$10,00 © 1999 TELE

Session 12a4

the students had been uscd to weeklong, programmingin-

the-small assignments in CS1 and CS2. They had developed
a mindset that if they were too busy to do a quality job on
one assignment— no bother ~ they got a fresh start the next

week, Not so with the Lisp assignments— they just kept

coming back. When new assignment were discussed for

the first time in class, sighs of “not again” could be seen

throughout the room. Students complained to teaching
assistants, “When will he ever get over this hangup with
Lisp? Im sick of Lisp.” But, doubtlessly the students

learned a valuable lesson on incremental development and
on ‘suffering” with their own bad code and lack of
understanding. Additionally, the students, who had no
previous exposute to any functional language, fully
understood and appreciated functional programmag by the

end of the semester.

Assignment #1: “Good-bye Unix, Hello
Windows NT”

The first assignment was designed as an immigration away
from their past experience with Unix/g++ to using the
Windows NT/Visual Studio lab. The goal was to developa

web page that described them. The page had a set of
requirements that included a means of physically identifying
cach student (usually this was accomplished with a picture)
and limes when they were busy or available. These web
pages were used by the taching staff for name/face

recoghition and by other students when they were picking
partnets for group projects. (The University of Utah is

generally a commuter school with a student population
where most students have a family and work. Therefore, the
best mechanism for identifying parlners was to find someone
who had a similar schedule.) They had to be developed
vsing a WYSIWYG editor on the PC. Some students had
persenal computers at home with Windows; others had
limited experience with personal compters ahd Windows.

Those with limited experience quickly became frustrated and
could he found in the lab with desperate “spoonfecd me”

expressions on their face. Some resorted to emacs/HTMLE

hacking to get the job done. Eventually, all became quite
proficient in their new development environment,

Asgignment #2: “Where} the Source
Code?”

The building of the LISP interpreter began in ¢arnest with
the second assignment, However, the students didnt get to
participate in the “building,” only the testing. A mythical

pragrammer, J. Hacker, had all the fun coding. The students
were given a specilication via the homework assignment, a
header file, and an executable. No source code! The
students did not feel they had contrel of the assignment
without seeing the source code. In industry, objective,

November 1¢ - 13, 1999 San Juan, Puerto Rico

29" ASEE/TEEE Frontiers in Fducation Conference
12a4-13

independent test groups that never see source code often do
black box testing, So, this experience prepared the students
for the future,

Shortly after the students received their assignment and
code, they needed to produce a test plan to validate that the
code actually performed according to the specification.
Their test plan outlined a test case and the expected results
when the test case was run, At assignment comipletion, they
needed to hand in a revised tet plan with all test cases, the
expected results, and the actual results, They also needed to
hand in a document enumerating all defects they detected in
the cede and fullydocumented, nicelystructured test code.

An important learning experience of thisassignment
was due to the intentionally poorlywritien specifications.
The students asked questions about what the specs meant,
what happens in ertor situations, what happens when a
certain set of arguments is given, etc. By the time we
evaluated the asignment, they had learned the benefit of
well-written specifications. Having been treated to poor
specifications, they realized that they would not want to
force bad specifications on any other programmer.

Assignment #3: “How Do We Know When
We Are Done?”

J. Hacker did it again — added more buggy garbage

collection code to the Lisp interpreter! Much to their relief,
the students were actually able to see the source code this
time. The students had a specification, purposely not
thorough, via the homework assignment. Their job was to

identify defects in the code by running their test cases from
Assignment #2 as regression test cases, coding and running
new test cases to validate the added function, and using the
Visual C++ debugger. Apgain, the student were itritated by

the “open-endedness” of this assignment. “How do we

know when we are done?” “How many defects are in there,

anyway?” Some very interesting questions . . . that we never
answered.

In their previous experience with the g++ compiler, gt
was the only debugger available. Most students found gdb
difficult and resorted to debugging by placing print
statements in their code. This assignment, however, coutd
not be done without using and learning the Visual C++
debugger. The students had todocument all the defects they
found, complete with the breakpoint, the call stack at the
breakpoint, the values of the arguments and variables at the
breakpoint, and the necessary changes to repair the error.
They also had to hand in their complete set offest cases and
revised code with all defects fixed. This assignment broke
the students of their “debugging with print statements” habit,
setting the stage for more efficient debugging on future
assignments. It also taught them that in the rcal world, os
does not always debug your own code.

0-7803-5643-8/99/$10.00 © 1999 IEEE

Session 12a4

Assignment #4: “Debugging in Style”

I. Hackers code style was very poor. There were not
enough ¢omments, the style was inconsistent and would
certainly not confarm to any coding standards. Coding with
good style and adhering to standards was emphasized in
lecture material, Now, the students needed to fix J. Hackers
style and documentation problems, while ensuring all
regression test cases continue to work.

The students needed to add appropriate comments and
function and program headers. The more challenging aspect
of the assignment was getting the code to conform to the
coding standards enforced by ParaSoft Corporation’
CodeWizard tool. The CodeWizard for C++ tool performs
statie, source code analysis to enforce CH+ coding standards
to produce cleaner, more robust code. The standards
enforced by the tool are based the ‘items for effective C-t+
programming” described in the popular booksEffective C+-+
[2] and More Effective C++ [3], Meyers-Klaus items and
Universal Coding Standard items. From this assignment
forward, any code the students wrote had to confoerm to the
CodeWizard standards. We found the ParaSofi tools very
useful; the students were thrilled because ParaSoft gae all
164} of them copies for their home use. Although the student
learning in this assignment was exactly what we planned, a
big problem was grading the assignments. J. Hacker’ code
contained so many coding style problems that the teaching
agsistants were forced to hand check each and evety line of
each program. This was VERY time consuming.

Assignment #5: “Itks Too Slow, ” complains
the customer

In the fifth part of the assignment, J. Hacker implemented a
symbol table for the Lisp interpreter. But alas, ‘the
customer” complained that it takes way too long to create
new symbols and to find existing symbols. “How much
faster do we need to make it?” inquired the students. “Oh, }
dont know. Tt needs to be a lot faster,” replied the
customer, Another openended assignment! The students
were challenged to be among the top 15% fastest performers
to obtain an extra [§ point bonus.

The students were taught to use the Visual C++ profiler
to identify specifically which parts of the program were time
hogs. It turned out that J. Hacker implemented the symbeol
table as a static array that used a linear search. The students,
who had not faken a Data Structures class vet, had to
tesearch solutions for making it faster. Most did determine
that a hash table would be best. They needed to improve the
data structures and implementation of several functions.
Then, they had to turn in a faster working version that ran all
previous regression tests and new tests refated fo the symbol
table functions, and that adheed to coding standards
enforced by CodeWizard. Tveryone seemed to enjoy this

November 18 - 13, 1999 San Juan, Puerto Rico

29'"" ASEE/AEEF Frontiers in Education Conference
12a4-14

assignment because they felt that it was an intercsting
challenge to first isolate the offending part of the program
and then try to make that part perform faster.

Assignment #6: “Finally, Our Own Code”

Finally, a full two months into the class, the students finally
got to design and implement their own code. They
develaped the specitied functionality for printing Lisp Items.
There already was, of course, an established puble interface

that they were required to match. They also needed to
ensure all previous regression test cases ran, develop new
test cases related to printing and again adhere to coding
standards.

Assignment #7: “Let}t Integrate at 11:30
Tonight”

Assignment 7 was, for most, the first time the students ever
worked with a partner to produce a software product. As a
pair, the students had to write the ‘read” and ‘kvaluate”
modules to complete the read/eval/print loop. We did not
specily exactly how ta asspn the tasks between the students,
but generally, one student of the pair designed and coded the
read module; the other student designed and coded the
evaluate module. The students also had to test their work,
and were cncouraged to swap modules for testhg prior to
integration. Working with a partner and integrating code
turned out to be much harder than they anticipated. More
students were late than an any other assignment. One group
begged for mercy the morning afier it was due, “We figured
as long as we got together to integrate at 11:30 last night,
wel be able to turn it in by midnight.” The lessans on the
difficulty of integrating proved valuable for the end of the
semester project, assignment 9.

Assignment #8: “A Rose By Any Other
Name...”

In assignment 8, the students were exposed to the Rational
Rose tool. First, they used to tool to reengineer the design
of their interpreter. They then added to this design by using
the tool to define a new class with attributes and methods.
Rose then was used to penerate skeleton code for these
methods, Although this was somewhat of a diversion frem
the task of creating the Lisp system, it proved to be a good
exposure to these types of tools. The students were very
impressed.

Assignment #9: “The Finale”

For the final project of the semester, the students worked in
groups of four to six students to extend their Lisp system.

0-7803-5643-8/99/510.00 © 1999 IEEE

Session 12a4

They were given the choice of building a GUI or to building
the capability to dynamically define functions. However, by
the end of the project, they needed to integrate their code
with that of another group. Therefore, their working product
they turned in for a grade had both a GUI and the ability to
dynamically define functions.

. The group structure and procedures were defned carly.
Each team had a password-protected web page, which was
used to communicate with the teaching staff and among
team members. Members of the team chose roles, such as
meeting facilitator, team scribe, team lcader, lead
requirements gatherer, leal designer, lead fester, integration
specialist, etc. Pach of these roles had assigned duties that
had to be done in addition to any coding they were assigned.
Requirements and design were submitted midway through
the assignment. After that time, all clanges had to be
approved. Official code inspections by the group were held
and documented.

After the long, hard semester, the students were
tremendously proud to demonstrate their working Lisp
interpreters. Many who had struggled to understand
functional programming and Lisp had an “Ah-ha”
expetience at this peint. Several groups went way beyond
the assignment requirements, obtained Lisp manuals, and,
essentially, built a fufly-functional Lisp interpreter with a
GUIL

Summary: “If was a great class to have
taken, but not to be taking.”

Course evaluation metrics placed the class among the top
15% of undetgraduate classes offered by the college of
engincering, quite a feat for the first offering of a large
undergraduate c¢lass. (The highest rated classes are
traditionally the smaller classes; this class had 160 students.)
At the end of the semester, the students resoundingly agreed
‘4t was a great class to have taken, but not to be taking.”
They had successfully made the transition from
pragrammers te sofiware engineers by expanding their views
on what it teally takes to produce a large software product.
They had mastered a new development environment, They
had learned a functional programming language. Even the
student who really did say, “If this is what itk really like,
maybe T better major in English” decided to stick with
Computer Seience.

Bibliography

1. McConnell, 8., Code Complete. 1993, Redmond,
Washington: Microsoft Press.

2. Meyers, S., Effective C++, Professional Computing
Series, ed. B.W. Kerninghan. 1998, Reading,
Massachusetts: AddisonWesley,

November 10 - 13, 1999 San Juan, Puerto Rico

29" ASEF/IEEE Frontiers in Education Conference
12a4-15

3. Meyers, 8., More Effective C++. Professional

Appendix A: The Building of the Lisp Interpreter

Assignment Addition to Lisp Interpreter
(additional learning experience)
9 GUIL, dynamically defined functions
{Team-Based Development)
8
{Rational Rose Tool)
7 Read and Eval modules
{Integration)
6 Printing
5 Symbol Table
(Profiling, Performance, Data Structures/Hash Table)
4
{Adherence to Coding Standards, CodeWizard Tool)
3 Garbage Collection
{Debugging via Visual C++ Debugger)
2 Storage Manager

{Black Box Testing, Perils of Poorly Written Specifications)

¢-7803-5643-8/99/$10.00 © 1999 IELE

29" ASEE/IEEE Frontiers in Education Conference
12a4-16

Creation of New Test Cases

Session 12a4

Computing Series. 1996: AddisonWesley.

Build up of Regression Test C>

November 10 - 13, 1999 San Juan, Puerto Rice

