
Exploring Pair Programming in
Distributed Object-Oriented Team Projects

Prashant Baheti
Department of

Computer Science
North Carolina State

University
Raleigh, NC 27695
+1 919-755-1264

ppbaheti@unity.ncsu.edu

Dr Laurie Williams
Department of

Computer Science
North Carolina State

University
Raleigh, NC 27695
+1 919-515-7925

williams@csc.ncsu.edu

Dr Edward
Gehringer

Department of
Computer Science

Dept. of ECE
North Carolina State

University
+1 919-515-2066

efg@ncsu.edu

Dr David Stotts
Department of

Computer Science

University of North
Carolina at Chapel Hill
Chapel Hill, NC 27599

+1-919-962-1833

stotts@cs.unc.edu

ABSTRACT
Previous research [1, 4] has indicated that pair programming is
better than individual programming when the pairs are
physically collocated. However, important questions arise:
How effective is pair programming if the pairs are not
physically next to each other? What if the programmers are
geographically distributed? An experiment was conducted at
North Carolina State University to compare the different
working arrangements of student teams developing object-
oriented software. The teams were both collocated and in
distributed environments; some teams practiced pair
programming while others did not. The results of the
experiment indicate that it is feasible to develop software using
distributed pair programming, and that the resulting software is
comparable to software developed in collocated or virtual
teams. Our findings will be of significant help to educators
dealing with team projects for distance-learning students, as
well as organizations that are involved in distributed
development of software.

Keywords
Extreme Programming (XP), collocated, distributed, pair
programming, collaborative programming, distance education,
virtual team.

1. INTRODUCTION
Distance education (DE) has come into prominence in recent
years. Team projects in DE computer-science courses call for
distributed development. These teams need to communicate
and work effectively and productively. Through the vehicle of
groupware, team members can communicate with each other
and complete their projects even when they are remotely
located, or when they work at incompatible hours.

Distributed team projects are also very common in the
software industry. Employing the power of distributed
development can increase an organization's opportunities to
win new work by opening up a broader skill and product
knowledge base, coupled with a deeper pool of personnel to
potentially employ [3]. Major corporations have launched

global teams, expecting that technology will make “virtual
collocation” a feasible alternative [2].

Previous research [1, 4] has indicated that pair programming is
better than individual programming in a collocated environment.
Do these results also apply to distributed pairs? It has been
established that distance matters [2]; face-to-face pair
programmers will most likely outperform distributed pair
programmers in terms of sheer productivity. However, the
inevitability of distributed work in DE calls for research in
determining how to make this type of work most effective.
This is the focus of this paper. We believe that our results also
have implications for industry, where virtual teams are quite
common.

The rest of the paper is organized as follows. Section 2
describes the previous work done with respect to pair
programming and virtual teams. Section 3 gives the hypothesis
for which we test our results. Section 4 outlines the
experiment that was conducted in a graduate class at North
Carolina State University (NCSU). Section 5 presents the
results. It is followed by an outline of future work in Section 6.
The conclusions are presented in Section 7.

2. PREVIOUS WORK
2.1 Pair Programming
Pair programming is a style of programming in which two
programmers work side by side at one computer, continuously
collaborating on the same design, algorithm, code or test. One
of the pair, called the driver, is types at the computer or writes
down a design. The other partner, called the navigator, has
many jobs. One of the roles of the navigator is to observe the
work of the driver, looking for tactical and strategic defects in
the work of the driver. Tactical defects are syntax errors,
typos, calls to the wrong method, etc. Strategic defects are
said to occur when the team is headed down the wrong path
— what they are implementing won’t accomplish what it needs
to accomplish. Any of us can be guilty of straying off the path.
A simple, “Can you explain what you’re doing?” from the
navigator can serve to bring the driver back onto the right

track. The navigator has a much more objective point of view
and can better think strategically about the direction of the
work. The driver and navigator can brainstorm on demand at
any time. An effective pair-programming relationship is very
active. The driver and the navigator communicate at least
every 45 seconds to a minute. It is also very important for
them to switch roles periodically. Note that pair programming
includes all phases of the development process — design,
debugging, testing, etc. — not just coding. Experience shows
that programmers can pair at any time during development, in
particular when they are working on something that is complex:
the more complex the task, the greater the need for two brains
[1, 9].

Research has shown that pairs finish in about half the time of
individuals and produce higher quality code. The technique has
also been shown to assist programmers in enhancing their
technical skills, to improve team communication, and to be
more enjoyable [1, 9, 10, 11].

2.2 Virtual Teaming

A virtual team can be defined as a group of people , who work
together towards a common goal, but across time, distance,
culture and organizational boundaries [15]. In our context the
goal is development of software. The members of a virtual
team may be located at different work sites, or they may travel
frequently, and need to rely upon communication technologies
to share information, collaborate, and coordinate their work
efforts. As the business environment becomes more global and
businesses are increasingly in search of more creative ways to
reduce operating costs, the concept of virtual teams is of
paramount importance [6].

DE may be defined as “a form of education in which there is
normally a separation between teacher and learner, and thus
one in which other means — the printed and written word, the
telephone, computer conferencing or teleconferencing, for
example — are used to bridge the physical gap” [14]. The
concept of virtual teaming is a boon for distance education as it
allows distance-learning students participate in team projects,
although the individual team members are geographically
dispersed.

In the past, there was no support for collaborative
programming for virtual teams. Advancements in technology
and the invention of groupware have changed this situation.
“Students can now work collaboratively and interact with each
other and with their teacher on a regular basis. Students
develop interpersonal and communication skills that were
unavailable when working in isolation” [16].

DE is experiencing explosive growth. “Online learning is
already a $2 billion business; Gerald Odening, an analyst with
Chase Manhattan Bank, predicts that the figure will rise by
35% a year, reaching $9 billion by 2005” [12]. The federal
government assigns great importance to advances in distributed
learning. In November 1997, the Department of Defense
(DoD) and the White House Office of Science and
Technology Policy (OSTP) launched the Advanced Distributed
Learning (ADL) initiative. The role of the ADL is “to ensure
access to high-quality education and training materials that can

be tailored to individual learner needs and made available
whenever and wherever they are required” [13].
Programming students have been major participants in the
growth of distance education. However, software project
courses, particularly team projects, provide a significant
challenge to geographically separated students.

A primary consideration in virtual teaming is that of
communication [7]. Poor communication can cause problems
like inadequate project visibility, wherein everyone does his/her
individual work, but no one knows if the pieces can be
integrated into a complete solution. Coordination among the
team members could also be a problem. Finally, the
technology used must be robust enough to support distributed
development.

In the educational field, with distance learning on the rise,
virtual teaming has become inevitable. At the same time, it is
important to meet the same learning objectives in distance
learning as in a traditional classroom.

3. HYPOTHESES
In the fall of 2001, we ran an initial experiment at North
Carolina State University to assess whether geographically
distributed programmers benefit from using technology to
collaborate synchronously with each other. Specifically, we
examined the following hypotheses:

• Distributed teams whose members pair synchronously
with each other will produce higher quality code than
distributed teams that do not pair synchronously.

• Distributed teams whose members pair synchronously will
be more productive (in terms of LOC/hr.) than distributed
teams that do not pair synchronously.

• Distributed teams who pair synchronously will have
comparable productivity and quality when compared with
collocated teams.

• Distributed teams who pair synchronously will have better
communication and teamwork within the team when
compared with distributed teams that do not pair
synchronously.

4. THE EXPERIMENT
An initial feasibility study was done in early fall 2001 between
NCSU and UNC to determine an effective technical platform
to allow remote teaming. Two pairs of programmers worked
over the Internet to develop a modest Java gaming application;
each pair was composed of one programmer from each
remote site. From this experiment we found that effective
remote teaming could be done with the PC sharing software
and audio support we describe in the following section; video
support was provided as well, but the teams did not find video
necessary and chose not to use it.

After the feasibility study, a formal experiment was conducted
in a graduate class, Object-Oriented Languages and Systems,1

1http://courses.ncsu.edu/csc517/common

taught by Dr Edward Gehringer at North Carolina State
University. The course introduces students to object
technology and covers OOA/OOD, Smalltalk, and Java. At
the end of the semester, all students participate in a 5-week
team project. We chose this class for our experiment for the
following reasons:

1. The projects were developed using an object-oriented
language.

2. The experiment had to be performed on a class that had
enough students to partition into four categories and still
have enough teams in each category to draw conclusions.

3. We needed some distance-education participants for the
class to make distributed development feasible and
attractive.

The aforementioned class had 132 students, 34 of whom were
distance learning Video-Based Engineering Education (VBEE)
students. The VBEE students were located throughout the
US, often too far apart for collocated programming or even
face-to-face meetings. The team project counted for 20% of
their final grade. The on-campus students were given 30 days
to complete the project, while the VBEE students had 37.
VBEE students’ deadlines are typically one week later than
on-campus students’, because the VBEE students view
videotapes2 of the lectures, which are mailed to them once a
week. Teams composed of some on-campus and some VBEE
students were allowed to observe the VBEE deadline, as an
inducement to form distributed teams..

Teams were composed of 2–4 students. The students self-
selected their teammates, either in person or using a message
board associated with the course, and chose one of the four
work environments listed below.

1. Collocated team without pairs (9 groups)
The first set of teams developed their project in the traditional
way: group members divided the tasks among themselves and
each one completed his or her part. An integration phase
followed, to bring all the pieces together.

2. Collocated team with pairs (16 groups)
The next set of groups worked in pairs. Pair programming
was used in the analysis, design, coding and testing phases. A
team consisted of one or two pairs. If there were two pairs,
an integration phase followed.

The next two environments consisted of teams that were
geographically separated — “virtual teams.” These groups
were either composed entirely of VBEE students, or a
combination of VBEE and on-campus students.

3. Distributed team without pairs (8 groups)
The third set of teams worked individually on different modules
of the project at different locations. The contributions were
combined in an integration phase.

2The VBEE program is moving from videotape to video

servers, but this change is not yet complete.

4. Distributed team with pairs (5 groups)
This fourth set of teams developed the project by working in
pairs over the Internet. At the end, they integrated the various
modules.

The pairs in this experiment used headsets and microphones to
speak to each other. They viewed a common display using
desktop sharing software, such as NetMeeting, PCAnywhere,
or VNC. They also used instant-messaging software like
Yahoo Messenger while implementing the project. A typical
session involved two programmers sharing desktops, with one
of the pair (the navigator) having read-only access while the
other (the driver) actually edited the code. The changes made
by the driver were seen in real time by the navigator, who was
constantly monitoring the driver’s work. The navigator could
communicate with the driver by speaking over the microphone,
or via instant messaging. As in the initial platform experiment,
the students were furnished Intel digital cameras to use as
Webcams for videoconferencing, to allow them, for example,
to show paper design documents to each other. However, as
earlier, none of these teams found the need to use the
Webcams.

In order to record their progress, the students utilized an online
tool called Bryce [8], a Web-based software-process analysis
system used to record metrics for software development.
Bryce was developed at NCSU under the direction of the
second author. Using the tool, the students recorded data
including their development time, lines of code and defects.
Development time and defects were recorded for each phase
of the software development cycle, namely, planning, design,
design review, code, code review, compile and test. Using
these inputs, Bryce calculated values for the metrics used to
compare the four categories of group projects.

Over the course of the project, the metrics recorded by the
students were monitored by the research team so as to make
sure that they were recorded on time and were credible. It
was found that defects had not been recorded properly by
many of the groups, and hence, defects recorded were not
considered in this analysis. Two groups (one in category 2 and
one in category 3) that had not recorded time metrics properly
were excluded from the analysis.

The two metrics used for the analysis were productivity, in
terms of lines of code per hour; and quality, in terms of the
grades obtained by the students for the project. Additionally,
after the students had completed their projects, they filled out a
survey regarding their experiences while working in a
particular category, the difficulties they faced, and the things
they liked about their work arrangement.

5. RESULTS
Data were analyzed in terms of productivity and quality, as
defined above. Also, student feedback formed an important
third input for the experiment. Our goal was not to show that
distributed pair programming is superior to collocated pair
programming for student teams. Our goal was to demonstrate
that distributed pairing is a viable and desirable alternative for
use with student teams, particularly for distance education

students. We plan to repeat this experiment in the Fall 2002
semester to build up a larger base of results.

5.1 Productivity
Productivity was measured in terms of lines of code per hour.
Average lines of code per hour for the four environments are
shown in Figure 1.

Lines of Code per hour

15.1 14.8

21.1

18.5

0

5

10

15

20

25

Non-pair
collocated

Pair
collocated

Non-pair
distributed

Pair
distributed

A
ve

ra
ge

 L
O

C
/h

r

Figure 1

The results show that distributed teams had a slightly greater
productivity as compared to collocated teams; however, the f-
test for the four categories shows that results are not
statistically significant (p < 0.1), due to high variance in the
data for distributed groups. This is better depicted by the box
plot (Figure 2) for the four categories, which illustrates the
distribution of the metric for the four environments.

Figure 2

A box plot shows the distribution of data around the median.
The vertical rectangle for each category shows the distribution
of the middle 50% of the readings. The horizontal line inside
each rectangle shows the median value for that particular
category. The line segment from the top of the rectangle
shows the range in which the top 25% of the values lie.
Similarly, the line segment below the rectangle shows the
range in which the bottom 25% of the values lie. Thus, the end
points of the two line segments indicate the total range that the
values for a particular category fall into. For example, the

median for the non-pair collocated category is around 10
LOC/hr., with the middle 50% of the values lying between
approximately 9 and 13 LOC/hr., while the entire range is
between 5 and 35 LOC/hr., approximately.

If the comparison is restricted to the two distributed categories,
a statistical t-test on the two categories shows that this
difference is not statistically significant. In terms of
productivity, the groups involved in virtual teaming (without
pairs) is not statistically significantly better than those involved
in distributed pair programming. In other words, teams
involved in distributed pair programming perform similarly to
those on virtual teams without distributed pair programming.

5.2 Quality
The quality of the software developed by the groups was
measured in terms of the average grade obtained by the group
out of a maximum of 110. The graph below indicates that the
performance of students did not vary much from one category
to another.

Grades

92.4 93.6
97.4

101.3

0

20

40

60

80

100

Non-pair
collocated

Pair
collocated

Non-pair
distributed

Pair
distributed

A
ve

ra
ge

 S
co

re

Figure 3

A box plot for the grades only corroborates the claim made
above. Although nothing statistically significant can be said
about the grades for the four categories, it is interesting to see
that those teams performing distributed pair programming were
very successful in comparison to other groups. The results of
the statistical tests indicate that teams involved in distributed
teams with pair programming performed similarly to those
distributed teams that did not practice pair programming in
terms of project grade.

Figure 4

5.3 Student Feedback
Productivity and product quality is important. However, as
educators we strive to provide positive learning experiences for
our students. We ran a survey to assess students’ satisfaction
with their working arrangement. One of the questions was
about cooperation within the team. Table 1 shows the
responses of the students in the different environments.

 Very
good

Good Fair Poor

Non-pair collocated 46% 40% 11% 3%

Pair collocated 62% 28% 10% 0%

Non-pair distributed 45% 37% 18% 0%

Pair distributed 83% 17% 0% 0%

Responses to the question, “How was the cooperation between
your team members?”

Table 1: Cooperation within team

The communication among the team members is an important
issue in team projects. Table 2 shows the responses of
students regarding communication among team members.

 Very
good

Good Fair Poor

Non-pair collocated 57% 26% 11% 6%

Pair collocated 58% 28% 12% 2%

Non-pair distributed 41% 41% 14% 4%

Pair distributed 67% 33% 0% 0%

Responses to the question, “How was the
communication with your team?”

Table 2: Communication among Team Members

The survey also indicates that five out of six students felt that
coding and testing are most suitable phases for distributed pair
programming. Collocated pair programmers, in general, found
pair programming to be useful in all the phases of software

development. When asked to identify the greatest obstacle to
distributed pair programming, students commented as follows:

“Initially exchanging code/docs via e-mail was a
problem. Later on we used Yahoo briefcases to
upload code to others to read it from there. From
then on things went very smooth”

“Finding common time available for all.”

The students were asked to identify the biggest benefits of the
distributed pair programming, and responded—

“If each person understands their role and fulfills
their commitment, completing the project becomes a
piece of cake. It is like Extreme Programming with
no hassles. If we do not know one area we can
quickly consult others in the team. It was great.”

“There is more than one brain to work on the
problem.”

“It makes the distance between two people very
short.”

Five out of the six students involved in distributed pair
programming thought that technology was not much of a
hindrance in collaborative programming. Also, 23 out of 28
students involved in virtual teaming with or without pair
programming felt that there was proper cooperation among
team members.

6. FUTURE WORK
The experiment we conducted was a classroom experiment
among 132 students, including 34 distance-learning students.
To be able to draw statistically significant conclusions, such
experiments have to be repeated, on a larger scale if possible.
However, this experiment has given initial indications of the
viability of distributed pair programming. We intend to conduct
more experiments like this so that we can draw conclusions
about distributed pair programming, and whether virtual teams
should be a standard practice in the classroom as well as in
industry.

7. CONCLUSIONS
The results of our experiment indicate the following:

• Pair programming in virtual teams is a feasible way of
developing object-oriented software.

• Pair programming in collocated teams is a feasible way of
developing object-oriented software.

• Software development involving distributed pair
programming seems to be comparable to collocated
software development in terms of two metrics, namely
productivity (in terms of lines of code per hour) and
quality (in terms of the grades obtained).

• Collocated teams did not achieve statistically significantly
better results than the distributed teams.

• Feedback from the students indicates that distributed pair
programming fosters teamwork and communication within
a virtual team.

Thus, the experiment conducted at NC State University is a
first indication that distributed pair programming is a feasible
and efficient method for dealing with team projects.

8. ACKNOWLEDGMENTS
We would like to thank NCSU undergraduate student Matt
Senter for his help in administering this experiment. The
support of Intel in providing equipment is graciously
acknowledged. We would also like to thank NCSU graduate
student Vinay Ramachandran for developing the tool called
Bryce to record project metrics.

9. REFERENCES
[1] L. A. Williams, “The Collaborative Software Process

PhD Dissertation”, Department of Computer Science,
University of Utah. Salt Lake City, 2000.

[2] G. M. Olson and J. S. Olson, “Distance Matters”.
Human-Computer Interaction, 2000, volume 15, p. 139–
179.

[3] P. E. McMahon, “Distributed Development: Insights,
Challenges, and Solutions”, CrossTalk ,
http://www.stsc.hill.af.mil/CrossTalk/2001/nov/mcmahon.
asp, 2001

[4] J. T. Nosek, “The case for collaborative programming”,
Communications of the ACM 41:3, March 1998, p. 105–
108.

[5] K. Beck, “Extreme Programming Explained: Embrace
Change”. Reading, Massachusetts: Addison-Wesley,
2000.

[6] S. P. Foley, “The Boundless Team: Virtual Teaming”,
http://esecuritylib.virtualave.net/virtualteams.pdf, Report
for MST 660, Seminar in Industrial and Engineering
Systems, Master of Science in Technology (MST)
Graduate Program, Northern Kentucky University, July
24, 2000.

[7] D. Gould, “Leading Virtual Teams”, Leader Values,
http://www.leader-values.com/Guests/Gould.htm. July 9,
2000.

[8] http://bryce.csc.ncsu.edu/tool/default.jsp

[9] L. A. Williams, and R. Kessler, Pair Programming
Illuminated, Boston, MA: Addison Wesley, 2002.

[10] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries,
“Strengthening the case for pair-programming”, IEEE
Software 17:4, July/Aug 2000, pp. 19–25.

[11] A. Cockburn, and L. Williams, “The costs and benefits of
pair programming”, in Extreme Programming Examined,
Succi, G., Marchesi, M. eds., pp. 223–248, Boston, MA:
Addison Wesley, 2001

[12] J. Traub, “This campus is being simulated”, New York
Times Magazine, November 19, 2000, pp. 88–93+.

[13] ADL, “Advanced Distributed Learning”,
http://www.adlnet.org.

[14] I. Mugridge, “Distance education and the teaching of
science”, Impact of Science on Society 41:4, 1991, pp.
313–320

[15] B. George., Y. M. Mansour, “A Multidisciplinary Virtual
Team”, Accepted at Systemics, Cybernetics and
Informatics (SCI), 2002.

[16] M.Z. Last, “Virtual Teams in Computing Education”,
SIGCSE 1999: The Thirtieth SIGCSE
Technical Symposium on Computer Science
Education, LA, New Orleans, 1999, Doctoral
consortium. See page v. of the proceedings.

