
A Structured Experiment of Test-Driven Development
Boby George

Department of Computer Science
Virginia Polytechnic Institute and State University

Falls Church, VA 22043 USA
(+1) 703 893 0180
boby@vt.edu

Laurie Williams
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8207 USA

(+1) 919 513 4151
williams@csc.ncsu.edu

ABSTRACT
Test Driven Development (TDD) is a software development
practice in which unit test cases are incrementally written
prior to code implementation. We ran a set of structured
experiments with 24 professional pair programmers. One
group developed a small Java program using TDD while
the other (control group), used a waterfall-like approach.
Experimental results, subject to external validity concerns,
tend to indicate that TDD programmers produce higher
quality code because they passed 18% more functional
black-box test cases. However, the TDD programmers took
16% more time. Statistical analysis of the results showed
that a moderate statistical correlation existed between time
spent and the resulting quality. Lastly, the programmers in
the control group often did not write the required
automated test cases after completing their code. Hence it
could be perceived that waterfall-like approaches do not
encourage adequate testing. This intuitive observation
supports that perception that TDD has the potential for
increasing the level of unit testing in the software industry.

Keywords
Software Engineering, Test Driven Development, Extreme
Programming, Agile Methodologies.

1. INTRODUCTION

Test Driven Development (TDD) [2], a software
development practice used sporadically for decades [10,
14], has gained added visibility recently as a practice of
Extreme Programming (XP) [1]. The practice involves the
implementation of a system starting from the unit test cases
of an object. Writing test cases and implementing that
object or object methods, then triggers the need for other
objects/methods. An important rule in TDD is: “If you
can’t write a test for what you are about to code, then you
shouldn’t even be thinking about coding.” [6]

An object is the basic building block of Object-Oriented
Programming. Unless objects are designed judiciously,
dependency problems, such as tight coupling of objects and
fragile super classes (inadequate encapsulation) can creep
in. These problems could result in a large complex code
base that compiles and runs slowly. XP originator Kent
Beck asserts, “Test-first code tends to be more cohesive
and less coupled than code in which testing isn’t a part of

the intimate coding cycle.” [3] TDD proponents argue that
reduced coupling occurs because the practice guides them
to the building of objects that are actually needed (to pass
test cases based on the requirements) rather than building
objects that are thought to be needed (due to possible
improper understanding of requirements). Moreover, TDD
enables continuous regression testing, which improves
code quality [2].

Software practitioners can be concerned about the lack
of upfront design in TDD and the need to make design
decisions at every stage. This concern necessitates the need
to empirically analyze and quantify the effectiveness of this
practice.

The research outlined in this paper empirically examines
the following two hypotheses:
1. The TDD practice will yield code with superior

external code quality when compared with code
developed with a waterfall-like practice. External code
quality will be assessed based on the number of
functional, black-box test cases passed.

2. Programmers who practice TDD will develop code
faster than programmers who develop code with a
more traditional waterfall-like practice. Programmers’
productivity will be measured by the time (hours) to
complete the development.

To investigate these hypotheses, research data were
collected from three sets of structured experiments
conducted with professional programmers.

2. BACKGROUND AND RELATED WORK

In this section, we first describe the TDD practice.
Then, we describe two empirical studies of TDD.

2.1 Test-Driven Development

The TDD practice starts with thoughts on how to test
the required functionality. After writing automated test
cases that generally will not even compile, the
programmers write implementation code to pass these test
cases. The work is kept within programmer’s intellectual
control; as the programmer is continuously making small
implementation decisions and increasing functionality at a
relatively consistent rate. All of the test cases that exist for
the entire program must successfully pass before new code
is considered fully implemented. Hence it is perceived,

with a degree of confidence, that the new code will not
introduce a fault or mask a fault in the current code base.
Another thumb rule in TDD is that whenever a software
defect is found, unit test cases are added to the test suite
prior to fixing the code.

The following is a theoretical analysis on the professed
shortcomings and benefits of TDD.
2.1.1 Shortcomings

Lack of Design. Sometimes, practitioners who utilize
TDD begin development with some design activities.
However, TDD often does not include any upfront design.
Hence the applicability of the later approach is limited by
the comprehension capacity of programmers’ minds.
Further, practitioner van Deursen asserts that the TDD
philosophy of having zero to very little design works, only
when (1) the team has a good understanding of code base
(2) the code is in good shape [21]. He further asserts that
the practice can suffer from lack of conceptual integrity
[21] (note that Brooks contends that conceptual integrity is
the most important consideration in system design [4]).
Finally, van Deursen asserts that the practice’s overall
philosophy is high risk/high return: if TDD works it can
lead to time and cost saving, but if it fails, then there is no
normal defense as with explicit design and documentation
[21].

Researchers have noted that over a period of time, the
techniques and notations developed for software design
have been integrated into the implementation process. Such
integration has tended to blur, if not confuse, the distinction
between design and implementation [9, 19]. The TDD
practice also blurs the distinct phases of program
development (design, code, and test). Since the
implementation process, focuses more on how the elements
need to be implemented and less on the logical structure, it
can be argued that faithful adoption of TDD might result in
missing the macro or complete picture of the software.

Applicability of Practice. Some codes are inherently
hard to test using TDD (for example GUIs [3]). Further, the
TDD practice requires considerable effort to be expended
on writing mock test objects. Additionally, since no formal
documentation takes place, the rationale behind important
decisions is not documented and can get lost.

Reliance on Refactoring. TDD utilizes refactoring and
rigorous testing to achieve code understanding and to
manage code complexity. The second law of software
evolution states “As a large program is continuously
changed, its complexity, which reflects deteriorating
structure, increases unless work is done to maintain or
reduce it." [15] Refactoring is essential for maintaining or
reducing complexity in TDD-developed code.

Skill level. Writing test cases for hard-to-test code
requires a high level of experience and determination from
programmers. Average programmers might lack the
required level of experience, resulting in code without

proper test cases or documentation [21]. Further,
practitioners have reported that maintaining test assets
requires special skills [21, 22].
2.1.2 Benefits

Program Comprehension. Studies indicate that about
half of programmers’ task during software maintenance is
involved in understanding code [7]. The TDD approach
helps in program comprehension because it encourages
programmers to explain their code using test cases and
code itself, rather than by using descriptive words.
Secondly, it ensures that the test cases are up to date.
However the practice does have the paradox that to
understand one piece of code, the reader has to go through
another piece of code (test code) and the code itself, a good
rendering of the measure twice, cut once principle.

Efficiency. TDD proponents believe that the fine
granularity of the test-then-code cycle gives continuous
feedback to programmer. With TDD, faults are identified
quickly as new code is added to the system; hence the
source of the problem is more easily determined. Based on
prior research [17, 23], we think that the efficiency of
fault/defect removal and the corresponding reduction in the
debug time compensate for the additional time spent
writing and executing test cases.

Test Assets. TDD enables testability. The use of the
TDD practice drives programmers to write code that is
automatically testable, such as having functions/methods
returning a value that can be checked against expected
results. The automated unit test cases written with TDD are
valuable assets to the project. Subsequently, when the code
is enhanced or maintained, running the automated unit tests
may be used to identify newly-introduced defects and to
control the uniformity over several releases of the product,
i.e., for regression testing.

Reducing Defect Injection. Hamlet and Maybee assert
that debugging and software maintenance are often
perceived as a low-cost activity in which a working code
defect is patched to alter its properties, and specifications
and designs are neither examined nor updated [12].
Unfortunately, such fixes and small code changes may be
nearly 40 times more error prone than new development
[13], and often new faults are injected during debugging
and maintenance. The suite of automated test cases are
used as a fine-granularity, low-level regression test. By
continuously running these automated test cases, one can
find out whether a change breaks the existing system.

2.2 Related Research

Recently, researchers have started to conduct studies on the
effectiveness of the TDD practice. Two such studies related to
our work. These are now described.

University of Karlsruhe Experiment. Müller and
Hagner [18] conducted a structured experiment comparing

TDD with waterfall (code then test) programming. The
experiment, conducted with 19 graduate students, measured
the effectiveness of TDD in terms of (1) development time,
(2) resultant code quality, and (3) understandability. The
researcher divided the experiment subjects into two groups,
TDD and control, with each group solving the same task.
The task was to complete a program in which the
specification was given along with the necessary design
and method declarations. The students completed the body
of the necessary methods. The researchers set up the
programming in this manner to facilitate objective and
randomized automated acceptance testing for their analysis.

The TDD group wrote all test cases prior to starting any
implementation code. The control group students wrote
automated test cases after completing the code. The
experiment occurred in two phases, an implementation
phase (IP) followed by an acceptance test phase (AP).
After IP, the students were made aware of the acceptance
test cases they did not pass. They then were given the
opportunity to correct their code. The researchers found no
difference between the groups in overall development time.
The TDD group had lower reliability after the IP phase and
higher reliability after the AP phase. However, the TDD
groups had statistically significant fewer errors when code
was reused. Based on these results, the researchers
concluded that writing programs in test-first manner neither
leads to quicker development nor provides an increase in
quality. The understandability of the TDD programs was
higher, measured in terms of proper reuse of existing
interfaces.

IBM Case Study. A TDD case study was run with an
IBM software development team [17, 23]. This IBM group
has been developing device drivers for over a decade. They
have one legacy product which has undergone seven
releases since late 1998. This legacy product was used as
the baseline in the case study. In 2002, the group developed
device drivers on a new platform. In the case study, the
seventh release on the legacy platform was compared with
the first release on the new platform. Because of its
longevity, the legacy system handles more classes of
devices on more platforms with more vendors than the new
system. The legacy software was an adequate comparison
for providing insight into the performance of the TDD
methodology.

In the legacy product, the IBM team historically had
used only ad-hoc testing techniques. For the new platform,
they created 2,400 automated unit test cases after they had
completed UML class and sequence diagrams. The team
realized about a 40% reduction in function verification test
defect density (defects/line of code) of new/changed code
when compared with an experienced team who used an ad-
hoc testing approach for the legacy product. They achieved
this result with no discernable impact to programmer
productivity. As usual, empirical concerns with case
studies involve the internal validity of the research, or the

degree of confidence and generalization in a cause-effect
relationship between factors of interest and the observed
results [5].

3. RESEARCH APPROACH

Our experimental trial results [11] with professional
programmers add to the family of TDD experiments.

3.1 Experiment Details

We ran experimental trials with eight-person groups of
programmers at three companies (John Deere, RoleModel
Software, and Ericsson). In each of the experimental trials,
the programmers were randomly assigned to one of two
groups: TDD and control. All programmers used the pair-
programming practice [24]. Each pair was asked to develop
a bowling game application (adapted from an XP episode
[16]) according to a set of requirements. The control group
pairs used a conventional design-develop-test (similar to
waterfall) [20] approach. Participants were asked to turn in
their programs upon completing the activities as outlined.
Then, their projects were assessed.

It was presumed that professional programmers would
write code to handle all error conditions gracefully.
However, our first trial results indicated that the pairs
determined their implementation was complete when they
could pass our specified acceptance test cases. Therefore,
in the latter two trials, the experiment conditions were
modified. All the programmers were asked to handle error
conditions gracefully and were not provided acceptance
test cases. Additionally, in the second two trials, the control
group programmers were asked to write automated test
cases after development.

The effectiveness of TDD was analyzed based on the
time taken to develop and on the results of black-box
functional testing. The quality of the test cases written by
TDD programmers was measured using code coverage
analysis. We supplemented our findings with survey data
on the perceptions the participants had about TDD practice.

3.2 External Validity

An important consideration in empirical research design
is external validity, that is, the ability of the experimental
results to apply to the world outside the research situation.
The strength of our results is that the experiment was done
with practitioners in their own working environment.
However, there are five important limitations that restrict
the external validity of our experiment.
• Our sample size was relatively very small (6 TDD

pairs, 6 control group pairs).
• As stated in the experiment details sections, after

reviewing the results of the first trial, we modified the
experiment instructions for the trials that followed.
Unfortunately, only one control group pair actually

wrote any worthwhile automated test cases, despite the
fact that they were specifically instructed to do so.

• All programmers worked in pairs. John Deere and
RoleModel had used the pair programming practice in
their day-to-day development, and Ericcson was
introduced to the practice. Although not required in
TDD, pair programming was used to accommodate the
objective of experiment (to evaluate the effectiveness
of TDD in the day-to-day development environment).
Therefore, our results apply to the combination of
TDD with pair programming.

• The application used in the evaluation process was
very small (typical size of the code was 200 LOC).

• The subjects of the experiments had varying
experience with TDD (from novice to expert). The
third set of professional programmers had only three
weeks of experience with TDD and pair programming
before the experiment. Hence, it is conceivable that the
TDD and pair programming approaches were not
stabilized with these subjects.

4. EXPERIMENT RESULTS

We now provide the results of our quantitative and
qualitative analysis.

4.1 Quantitative Analysis

The external code quality and productivity differences
between the TDD and the control group were analyzed and
quantified. Additionally, the test coverage of the TDD pairs
was examined. However, the validity of the results must be
considered within the context of the limitations discussed
in external validity section.
4.1.1 External code quality

We developed 20 black-box test cases to evaluate the
external code quality of professional programmers’ code.
The test cases validated the degree to which requirement
specifications were implemented and the robustness of the
code. The TDD pairs’ code passed approximately 18%
more test cases than the control group pairs. Figure 1
shows the box plot for the test cases passed. In the box
plot, the edges of the box mark the 25th and 75th
percentiles, while the horizontal line at the center of box
marks the median of distribution. The median value for the
TDD programmers’ code is higher than of the control
group programmers’ median.

A hypothesis of this research was that the TDD practice
would yield code with superior external code quality.
Based on the data analysis conducted, the experimental
findings are supportive that the TDD practice yields code
with superior external code quality.

66N =

NONTDDTDD

22

20

18

16

14

12

10

8

N
um

be
r o

f T
es

t C
as

es
 P

as
se

d

No. of data points 6 6
Group TDD Control

Figure 1: Box Plot for Test Cases Passed

4.1.2 Productivity
As shown in Figure 2, on average the TDD pairs took

approximately 16% more time to develop the application
than the control group pairs. The medians of the two
groups are nearly equal. However, the upper range value is
higher for the TDD programmers.

An important consideration in this analysis is that the
control pairs were asked to write test cases after they
developed code. However, only one group wrote any
worthwhile test cases. This resulted in an uneven
comparison of the time taken and hence a limitation to this
study. There are benefits resulting from the test cases
created by the TDD programmers. First, the TDD pairs
produced test assets along with the implementation code.
Second, the code developed is testable.

It was hypothesized that programmers who practice
TDD will be more productive, as measured by the time to
complete a program. However, contrary to our hypothesis,
the experiment results showed the TDD programmers took
approximately 16% more time than the control group
programmers.

6N =

TDDD

500

400

300

200

100

Ti
m

e
Ta

ke
n

in
 M

in
ut

es

 No. of data points
Group TDD

Figure 2: Box P
6

TD6

 Control

lot of Time Taken
NON6
 by Programmers

4.1.3 Correlating Productivity and Quality
On average, the TDD pairs produced higher quality

code. However, they took longer time, on average, to
complete this work. On analyzing the results of all 12 pairs,
we found a moderate correlation between the time spent
and the resulting quality. The two-tailed Pearson
Correlation had a value of 0.661, which was significant at
the 0.019 level. This analysis indicates that the higher
quality may be the result of the increased time taken by the
TDD pairs and not solely due to the TDD practice itself.
4.1.4 Code coverage

 We analyzed code coverage as an indication of the
quality of the test cases written by TDD programmers. The
industry standard for coverage is in the range 80% to 90%,
although ideally the coverage should be 100% [8]. As
shown in Figure 3, on average the TDD programmers
surpassed the industry standards in all the three types of
code coverage. The TDD programmers’ test cases achieved
a mean of 98% method, 92% statement and 97% branch
coverage. The testing tool used, JUnit, cannot test the main
method (of Java code), and hence the main method was
excluded from code coverage analysis. Including the main
method into the code coverage analysis would have
lowered the TDD programmers’ coverage results.

666N =

tement

VA
LU

ES

110

100

90

80

70

60

50

anchthod

15

9

Figure 3: Box Plot

4.2 Qualitative Analysi

A survey was conducte
programmers. The survey,
experiment, consisted of nine
nine close-ended questions
programmers’ opinion on thre

(1) How productive is the p
(2) How effective is the pra
(3) How difficult is the prac
A reliability analysis w

whether it was statistically val
of the nine questions into the
the Cronbach’s Coefficient

measures the level of consistency of survey responses. This
provides an indication on whether the individuals answered
all of the questions within the subscale similarly, to
aggregate the nine questions into the said concerns. All the
survey responses were statistical significant at the 0.01
level (p < 0.01), indicating that the aggregation was valid.
The statistical significance of each response was then
evaluated using the Spearman’s Rho test. The results of the
survey are found below in Table 1. (Note: the results of
only eight of the nine questions is displayed because two of
the closed ended questions addressed the same area.)

Table 1: Survey Results

Concern/Sub-concerns % Agree
Productivity – Aggregate 78%
 Facilitates better requirements 88%
 Reduces debugging effort 96%
 Reduces development time 50%
Effectiveness -- Aggregate 80%
 Yields higher code quality 92%
 Promotes simpler design 79%
 Is noticeably effective 71%
Difficulties in adoption -- Aggregate 40%
 Getting into TDD mindset 56%
 Lack of upfront design a hindrance 23%

Pe
rc

en
ta

ge
 o

f C
od

e
C

ov
er

ed

Based on survey comments, it can be concluded that

programmers generally feel that TDD is effective in terms
of code quality and improves programmers’ productivity.
However, getting into TDD mindset is difficult. Lastly,
some programmers expressed concerns about the increase
in development time needed to write the test cases.

5. CONCLUSIONS AND FUTURE WORK No. of data points 6
Br6
Me6
of Code Cov

s

d to the
administra

 close-ende
were aimed
e main conc
ractice for p
ctice?
tice to adop
as perform
id to aggreg
 stated thre
Alpha test
Sta

A series of experiments were conducted to examine the h
TYPE

Type of Coverage Method Statement Branc
erage

24 professional
ted before the
d questions. The
 at eliciting the
erns:
rogrammers?

t?
ed to determine
ate the responses

e concerns, using
. The alpha test

TDD practice. Specifically, the following hypotheses were
tested and corresponding conclusions were obtained,
subject to the limitations of the study:

• TDD practice appears to yield code with superior
external code quality, as measured by conformance to
a set of black-box test cases, when compared with
code developed with a more traditional, waterfall-like
model practice.

• The experiment results showed that TDD programmers
took more time (16%) than control group
programmers. However, the variance in the
performance of the teams was large and these results
are only directional. Additionally, the control group
pairs did not primarily write any worthwhile
automated test cases, making the comparison uneven.

• On an average, survey results indicate that, 80% of the
professional programmers thought TDD was an
effective practice and 78% believed the practice
improves programmers’ productivity. The survey
results are statistically significant.

• Survey results also indicated that TDD practice
facilitates simpler design and that lack of upfront
design is not a hindrance. However, for some,
transitioning to the TDD mindset is difficult.

 Further controlled studies on a larger scale in industry
and academia could strengthen or disprove these findings.

6. ACKNOWLEDGMENTS

We wish to thank the software programmers at John Deere,
RoleModel, and Ericsson who participated in this research.
We would also like to thank the North Carolina State
University Software Engineering research group for their
helpful suggestions on this paper. This research was
funded in part by AT&T.

7. REFERENCES

[1] K. Beck, Extreme Programming Explained: Embrace
Change. Reading, Massachusetts: Addison-Wesley, 2000.

[2] K. Beck, Test Driven Development: By Example: Addison
Wesley, 2002.

[3] K. Beck, "Aim, Fire," in IEEE Software, vol. 18,
September/October 2001, pp. 87-89.

[4] F. P. Brooks, The Mythical Man-Month: Addison-Wesley
Publishing Company, 1995.

[5] D. T. Campbell and J. C. Stanley, Experimental and Quasi-
Experimental Design for Research. Boston: Houghton
Mifflin Co., 1963.

[6] D. Chaplin, "Test First Programming," TechZone, 2001.
[7] T. A. Corbi, "Program Understanding challenge for the

1990s," IBM Systems Journal, vol. 28, pp. 294-306, 1989.
[8] S. Cornett, "Code Coverage Analysis," Bullseye Testing

Technology 2002.
[9] B. Foote and J. Yoder, "Big Ball of Mud," presented at

Fourth Conference on Patterns Languages of Programs,
Monticello, Illinois, September 1997.

[10] D. Gelperin and W. Hetzel, "Software Quality Engineering,"
presented at Fourth International Conference on Software
Testing, Washington, DC, June 1987.

[11] B. George, "Analysis and Quantification of Test Driven
Development Approach MS Thesis," in Computer Science.
Raleigh, NC: North Carolina State University, 2002.

[12] D. Hamlet and J. Maybee, The Engineering of Software.
Boston: Addison Wesley, 2001.

[13] W. S. Humphrey, Managing the Software Process. Reading,
Massachusetts: Addison-Wesley, 1989.

[14] C. Larman and V. Basili, "A History of Iterative and
Incremental Development," IEEE Computer, vol. 36, pp. 47-
56, June 2003.

[15] M. M. Lehman and L. Belady, Program Evolution:
Processes of Software Change. London: Academic Press,
1985.

[16] C. R. Martin, Advanced Principles, Patterns and Process of
Software Development: Prentice Hall, 2001, in press.

[17] E. M. Maximilien and L. Williams, "Assessing Test-driven
Development at IBM," presented at International Conference
of Software Engineering, Portland, OR, 2003.

[18] M. M. Muller and O. Hagner, "Experiment about Test-first
programming," presented at Empirical Assessment In
Software Engineering EASE '02, Keele, April 2002.

[19] D. E. Perry and A. L. Wolf, "Foundations for the Study of
Software Architecture," ACM SIGSOFT, vol. 17, pp. 40-52,
October 1992.

[20] W. W. Royce, "Managing the development of large software
systems: concepts and techniques," presented at IEEE
WESTCON, Los Angeles, CA, 1970.

[21] A. vanDeursen, "Program Comprehension Risks and
Opportunities in Extreme Programming," CWI, Amsterdam
SEN-R0110, ISSN 1386-369X, 2001.

[22] A. vanDeursen, L. Moonen, A. vandenBergh, and G. K. R. t.
code, "Refactoring test code," presented at XP 2001, 2001.

[23] L. Williams, E. M. Maximilien, and M. Vouk, "Test-Driven
Development as a Defect-Reduction Practice," presented at
IEEE International Symposium on Software Reliability
Engineering, Denver, CO, 2003.

[24] L. A. Williams, The Collaborative Software Process. Salt
Lake City, UT: Department of Computer Science, 2000.

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Test-Driven Development
	Shortcomings
	Benefits

	Related Research

	RESEARCH APPROACH
	Experiment Details
	External Validity

	EXPERIMENT RESULTS
	Quantitative Analysis
	External code quality
	Productivity
	Correlating Productivity and Quality
	Code coverage

	4.2 Qualitative Analysis

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

