
An Initial Investigation of Test Driven Development in
Industry

Boby George
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-7534

(+1) 919 601 2922

bobygeorge@ncsu.edu

Laurie Williams
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-7534

(+1) 919 513 4151

williams@csc.ncsu.edu

ABSTRACT
Test Driven Development (TDD) is a software development
practice in which unit test cases are incrementally written prior to
code implementation. In our research, we ran a set of structured
experiments with 24 professional pair programmers. One group
developed code using TDD while the other a waterfall-like
approach. Both groups developed a small Java program. We found
that the TDD developers produced higher quality code, which
passed 18% more functional black box test cases. However, TDD
developer pairs took 16% more time for development. A moderate
correlation between time spent and the resulting quality was
established upon analysis. It is conjectured that the resulting high
quality of code written using the TDD practice may be due to the
granularity of TDD, which may encourage more frequent and
tighter verification and validation. Lastly, the programmers which
followed a waterfall-like process often did not write the required
automated test cases after completing their code, which might be
indicative of the tendency among practitioners toward inadequate
testing. This observation supports that TDD has the potential of
increasing the level of testing in the industry as testing as an integral
part of code development.

Keywords
Software Engineering, Test Driven Development, Extreme
Programming, Agile Methodologies, Software Experimentation.

1. INTRODUCTION
Test Driven Development (TDD) [3], a software development
practice used sporadically for decades [9] has gained added visibility
recently as a practice of Extreme Programming (XP) [1, 2, 11, 12].
TDD is also known by names such as, Test First Design (TFD),
Test First Programming (TFP) and Test Driven Design (TDD). The
practice evolves the design of a system starting from the unit test
cases of an object. Writing test cases and implementing that object
or object methods then triggers the need for other objects/methods.

An important rule in TDD is: “If you can’t write test for what you
are about to code, then you shouldn’t even be thinking about
coding.” [6]

An object is the basic building block of Object Oriented
Programming (OOP). Unless objects are designed judiciously,
dependency problems, such as tight coupling of objects and fragile
super classes (inadequate encapsulation) can creep in. These
problems could result in a large complex code base that compiles
and runs slowly. XP originator Kent Beck asserts, “Test-first code
tends to be more cohesive and less coupled than code in which
testing isn’t a part of the intimate coding cycle.” [4] TDD
proponents argue that reduce coupling occurs because the practice
guides towards the building of objects that are actually needed (to
pass test cases based on the requirements) rather than building
objects that are thought to be needed (due to possible improper
understanding of requirements). Moreover, TDD enables continuous
regression testing, which improves code quality [3].

Although intriguing, software practitioners can be concerned about
the lack of upfront design in TDD and the need to make design
decisions at every stage of development. This necessitates the need
to empirically analyze and quantify the effectiveness of this
practice.

This research outlined in this paper empirically examines the
following two hypotheses:
1. The TDD practice will yield code with superior external code

quality when compared with code developed with a more
traditional waterfall-like practice. External code quality will be
assessed based on the number of functional (black-box test
cases) test cases passed.

2. Programmers who practice TDD will develop code faster than
developers who develop code with a more traditional waterfall-
like practice. Programmers’ speed will be measured by the
time to complete (hours) a specified program.

To investigate these hypotheses, research data was collected from
three sets of structured experiments conducted with professional
developers.

2. BACKGROUND AND RELATED WORK
In this section, we first describe the TDD practice in detail. Then,
we describe an empirical study of TDD that has been completed by
researchers in Germany.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2003, Melbourne, Florida USA.
Copyright 2003 ACM 1-58113-624-2/03/03…$5.00.

2.1 Test-Driven Development
With TDD, before writing implementation code, the developer
writes automated unit test cases for the new functionality they are
about to implement. After writing test cases that generally will not
even compile, the developers write implementation code to pass
these test cases. The developer writes a few test cases, implements
the code, writes a few test cases, implements the code, and so on.
The work is kept within the developer’s intellectual control because
he or she is continuously making small design and implementation
decisions and increasing functionality at a relatively consistent rate.
A new functionality is not considered properly implemented unless
these new unit test cases and every other unit test cases ever
written for the code base run properly.

Intellectually, one can consider why TDD could be superior to other
approaches.

• In any process, there exists a gap between decision (design
developed) and feedback (performance obtained by
implementing that design). The success of TDD can be
attributed to the lowering, if not elimination, of that gap, as the
granular test-then-code cycle gives constant feedback to the
developer [3]. As a result, defects and cause of the defect
can be easily identified – the defect must lie in the code that
was just written or in code with which the recently added code
interacts. An often-cited tenet of Software Engineering, in
concert with the Cost of Change [5], is that the longer a defect
remains in a software system the more difficult and costly it is
to remove. With TDD, defects are identified very quickly and
the source of the defect is more easily determined. Hence it is
this higher granularity of TDD that differentiates the practice
from other testing and development models.

• TDD entices programmers to write code that is automatically
testable, such as having functions/methods returning a value
which can be checked against expected results. Benefits of
automated testing include: (1) production of a reliable system,
(2) improvement of the quality of the test effort, and (3)
reduction of the test effort and minimization of the schedule
[8].

• The TDD test case create a through regression test bed. By
continuously running these automated test cases, one can
easily determine if a new change breaks anything in the
existing system. This test bed should also allow smooth
integration of new functionality into the code base.

2.2 Related Work
Recently, researchers have started to conduct studies on the
effectiveness of the TDD practice. Muller and Hagner [14]
conducted a structured experiment comparing TDD with traditional
programming. The experiment, conducted with 19 graduate
students, measured the effectiveness of TDD in terms of (1)
development time, (2) resultant code quality and (3)
understandability. The researcher divided the experiment subjects
into two groups, TDD and control, with each group solving the same
task. The task was to complete a program in which the specification
was given along with the necessary design and method declarations;
the students completed the body of the necessary methods. The
researchers set up the programming in this manner to facilitate
automated acceptance testing for their analysis.

The TDD group wrote their test cases while the code was written,
as described above; the control group students wrote automated test
cases after completing the code. The experiment occurred in two
phases, an implementation phase (IP) followed by an acceptance
test phase (AP). After IP, the students were made aware of the
acceptance test cases they did not pass; they then were given the
opportunity to correct their code. The researchers found no
difference between the groups in overall development time. The
TDD group had lower reliability after the IP phase and higher
reliability after the AP phase. However the TDD groups had
statistically significant fewer errors when code was reused. Based
on these results the researchers concluded that writing programs in
test-first manner neither leads to quicker development nor provides
an increase in quality. However, the understandability of the
program increases, measured in terms of proper reuse of existing
interfaces.

These experimental results need be considered in the context of its
limitations: the sample size was small, the students had limited
experience with TDD, and the results were blurred to a degree due
to large variance of data points. Additionally, the external validity of
their results can be improved by running further studies with
professional programmers.

3. RESEARCH APPROACH
We ran three TDD experimental trials [10] with professional
programmers. These results add to those previously discussed.

3.1 Experiment Details
We ran experimental trials with eight-person groups of developers
at three companies (John Deere, RoleModel Software, and
Ericsson). In each of the experimental trials, the developers were
randomly assigned to work in pairs in one of two groups: TDD and
control. All developers used the pair-programming practice
(whereby two programmers develop software side by side in one
computer) [16]. Each pair was asked to develop a bowling game
application (adapted from an XP episode [13]). The control group
pairs used the conventional design-develop-test-debug (waterfall)
[15] approach. All experiment participants were asked to develop a
small program according to a set of requirements. Participants were
asked to turn in their programs upon completing the activities as
outlined. Then, their projects were assessed.

We expected that professional programmers would write code that
handled all error conditions gracefully. However, after analyzing the
results of our first trial, we found this not to be the case. We found
that most of these initial pairs determined their implementation was
complete when they could pass our specified acceptance test cases.
Therefore, in the following two trials, all the developers were
specifically asked to handle all error conditions gracefully and none
of the pairs were provided acceptance test cases. Additionally, in
the second two trials, the control group developers were asked to
write automated test cases after development. Additionally, the
experience level with TDD of the 24 developers varied from
beginner to expert.

The effectiveness of TDD was analyzed using the following data:
(1) the time taken by participants to develop the application to
evaluate development speed; and (2) the results of black box
functional testing to evaluate external quality. Additionally, the
quality of the test cases written by TDD developers was measured

using code coverage analysis. We supplemented our findings using
survey data on the perceptions of the participants on the efficacy of
TDD.

3.2 External Validity
An important consideration in empirical research design is external
validity, the ability of the experimental results to apply to the world
outside the research situation. The strength of our results is that the
experiment was done with practitioners in their own working
environment. However, there are five important limitations to the
external validity of our experiment.

• Our sample size was relatively small (6 TDD pairs, 6 control
group pairs).

• After reviewing the results of the first trial, we modified the
experiment instructions for the trials that followed: (1) We
emphasized the need for the control group developers to write
automated test cases upon completing code implementation;
(2) we emphasized that all developers need to handle error
conditions; and (3) we did not provide any of the developers
the acceptance test cases. Unfortunately, only one control
group pair actually wrote any worthwhile automated test cases,
despite the fact that they were specifically instructed to do so.
Inadvertently, our control group may more accurately
represent the “state of the practice” of software development
in the industry

• In all the experiments, programmers worked in pairs. Two
professional developer organizations used pair-programming
practice in their day-to-day development and the other group
was familiar with the practice. Hence, although not required in
TDD, pair programming was used to accommodate the
objective of experiment (to evaluate the effectiveness of TDD
in the day-to-day development environment). Therefore, our
results apply to the combination of TDD with pair
programming.

• Fourth, the application used in the evaluation process was very
small (typical size of the code was 200 LOC).

• Fifth, the subjects of the experiments had varying experience
with TDD (from novice to expert). The third set of
professional developers had only three weeks of experience
with TDD before the experiment. Hence, it is conceivable that
the test-first approach on these subjects is not stabilized.

4. EXPERIMENT RESULTS
We now provide the results of our quantitative and qualitative
findings of the experiment.

4.1 Quantitative Analysis
The external code quality and productivity differences between the
TDD and the control group were analyzed and quantified.
Additionally, the test coverage of the TDD pairs was examined.
The results of these analyses are presented in this section.

4.1.1 External code quality
We developed 20 black-box test cases to evaluate the external code
quality of professional developers’ code. The test cases validated
the degree to which requirement specifications were implemented

and the robustness of the code (such as error handling capabilities).
The TDD pairs’ code passed approximately 18% more test cases
than the control group pairs. Figure 1 shows the box plot for the test
cases passed. In the box plot, the edges of the box mark the 25th
and 75th percentiles, while the horizontal line at the center of box
marks the median of distribution. First, the median value for the
TDD developers’ code is clearly much higher than of the control
group developers’ median.

A hypothesis of this research was that the TDD approach
would yield code with superior external code quality. Based on
the data analysis conducted, the experimental findings are
supportive that the TDD approach yields code with superior
external code quality. However, the validity of the results must be
considered within the context of the limitations discussed in external
validity section.

66N =

NONTDDTDD

22

20

18

16

14

12

10

8

Figure 1: Box plot for Test Cases Passed

4.1.2 Productivity
People can be skeptical about the additional time needed to write
and update test cases. As shown in Figure 2, on an average the
TDD pairs took approximately 16% more time to develop the
application than the control group pairs. The medians of the two
groups are nearly equal. However, the upper range value is higher
for the TDD developers.

An important consideration in this analysis is that the control pairs
were asked to write test cases after they developed code (in a
traditional code-then-test fashion). However, only one group wrote
any worthwhile test cases. This resulted in an uneven comparison of
the time taken and hence a limitation to this study. The extra time
taken by TDD could be attributed to the time needed to develop test
cases.

N
um

be
r

of
 T

es
t C

as
es

 P
as

se
d

No. of data points 6 6
Group TDD Control

66N =

NONTDDTDD

500

400

300

200

100

Figure 2: Box plot of Time Taken by Developers

There are many benefits resulting from the test cases created by
the TDD developers. First, the TDD pairs produced test assets
along with the implementation code. These test assets are very
valuable in the product life as the product is enhanced. Second, the
code developed is testable. If programs are written without
continuous consideration towards being automatically testable,
writing such test cases after the fact can be very difficult, if not
impossible. Third, the code that enters subsequent testing phases
and that is delivered to the customer is of higher quality. This higher
quality reduces testing and field support costs. Finally, the overall
life cycle time might be less in subsequent iterations as changes can
be made more easily.

It was hypothesized that programmers who practice TDD will
be more productive, as measured by the time to complete a
program. However, contrary to hypothesis, the experiment
results showed the TDD developers took approximately 16%
more time than the control group developers. However, the
validity of the results must be considered within the context of the
limitations discussed in external validity section.

4.1.3 Correlating Productivity and Quality
On average, the TDD pairs produced higher quality code. However,
they took longer time, on average, to complete this work. On
analyzing the results of all 12 pairs, we found a moderate correlation
between the time spent and the resulting quality. The two-tailed
Pearson Correlation had a value of 0.661, which was significant at
the 0.019 level. This analysis indicates that the higher quality may be
the result of the increased time taken by the TDD pairs and not
solely due to the TDD practice itself. However, one must consider
that all pairs turned in their programs when they felt it would run
correctly. The TDD pairs did not feel they were done until they
wrote higher quality code with a good set of automated test cases.
The control group pairs felt they were done with lower quality code,
primarily without any worthwhile automated test cases.

4.1.4 Code coverage
One of the concerns about the TDD approach is the thoroughness
of the test cases written by the TDD developers. Essentially in
TDD, the quality of the tests determines the quality of the code.
Analyzing the test cases for code coverage assessed the quality of
the test cases written by TDD developers.

The industry standard for coverage is in the range 80% to 90%,
although ideally the coverage should be 100% [7]. As shown in
Figure 3, on average, the TDD developers surpassed the industry
standards in all the three types of code coverage. The TDD
developers’ test cases achieved a mean of 98% method, 92%
statement and 97% branch coverage. It must be noted that the
testing tool used, JUnit, cannot test the main method (of Java code),
and hence the main method was excluded from code coverage
analysis.

666N =

TYPE

StatementBranchMethod

V
A

LU
E

S

110

100

90

80

70

60

50

15

9

Figure 3: Box Plot of Code Coverage

4.2 Qualitative Analysis
4.2.1 Survey
It is fruitful to substantiate quantitative findings with qualitative
feedback from the software developers in the experiment. A survey
was conducted among the 24 professional developers who
participated in the experiments. The survey, administrated before
the experiment, consisted of nine close-ended questions. The nine
close-ended questions were aimed at eliciting the developers’
opinion on three concerns:

(1) How productive is the practice for programmers?

(2) How effective is the practice?

(3) How difficult is the approach to adopt?

A reliability analysis was performed to determine whether it was
statistically valid to aggregate the responses of the nine questions
into the stated three subscales or indexes (productivity,
effectiveness, and difficulty of adoption) using the Cronbach’s
Coefficient Alpha test. The Cronbach’s Coefficient Alpha measures
this level of consistency of survey responses. This provides an
indication of whether all of the questions within a subscale (for
example, the productivity subscale) measure the same attribute and,
therefore, individuals should answer all of the questions within the
subscale similarly. The Alpha test results indicated that it was valid
to aggregate the nine questions into the said three sections. The
statistical significance of each response was then evaluated for
each of these sections using Spearman’s Rho test. All the survey
responses were statistical significant at the 0.01 level (p < 0.01).

On questions on programmer productivity, an overwhelming majority
of the developers believed that TDD approach facilitates better
requirements understanding (87.5%) and reduces debugging effort
(95.8%). However, only half of the developers felt that TDD led to
less code development time. Taking the average of all positive

T
im

e
T

ak
en

 in
 M

in
ut

es

No. of data points 6 6
Group TDD Control

Pe
rc

en
ta

ge
 o

f
C

od
e

C
ov

er
ed

No. of data points 6 6 6

Type of Coverage Method Statement Branch

comments, about 78% of developers thought that TDD improves
overall productivity of the programmer.

For questions relating to effectiveness, 92% of developers believed
that TDD yields higher quality code, 79% thought that TDD
promotes simpler design and 71% thought the approach was
noticeably effective. Hence, aggregating these scores indicates that
80% thought that TDD is effective.

The responses of developers on questions related to difficulties in
adopting the approach indicate some concerns. Fifty-six percent
(56%) of the professional developers thought that getting into the
TDD mindset was difficult. A minority (23%) indicated that the lack
of upfront design phase in TDD was a hindrance. Hence taking
average of the responses, 40% of the developers thought that the
approach faces difficulty in adoption.

Based on survey and student comments, it can be concluded that
developers feel that TDD is effective in terms of code quality and
improves programmers’ productivity. However, getting into TDD
mindset is difficult. Lastly, some programmers expressed concerns
about the increase in development time needed to write the test
cases.

5. CONCLUSIONS AND FUTURE WORK
A series of experiments were conducted to examine the TDD
practice. Specifically, the following hypotheses were tested and
corresponding conclusions were obtained, subject to the limitations
of the study:

• TDD approach appears to yield code with superior external
code quality, as measured by conformance to a set of black
box test cases when compared with code developed with a
more traditional waterfall-like model practice.

• The experiment results showed that TDD developers took
more time (16%) than control group developers. However, the
variance in the performance of the teams was large and these
results are only directional. Additionally, the control group pairs
did not primarily write any worthwhile automated test cases
(though they were instructed to do so), making the comparison
uneven.

• On an average, 80% of the professional developers held that
TDD was an effective approach and 78% believed the
approach improves programmers’ productivity. The survey
results are statistically significant.

• Qualitatively, this research also found that TDD approach
facilitates simpler design and that lack of upfront design is not
a hindrance. However, for some, transitioning to the TDD
mindset is difficult.

These results need to be viewed within the limitations of the
experiments conducted. Further controlled studies on a larger scale
in industry and academia could strengthen or disprove these
findings.

6. ACKNOWLEDGMENTS
We wish to thank the software developers at John Deere,
RoleModel, and Ericsson who participated in this research.

7. REFERENCES
[1] Auer, K. and Miller, R., XP Applied: Addison-Wesley, 2001.

[2] Beck, K., Extreme Programming Explained: Embrace
Change.: Addison-Wesley, 2000.

[3] Beck, K., Test Driven Development: By Example: Addison
Wesley, 2003.

[4] Beck, K., "Aim, Fire," in IEEE Software, vol. 18,
September/October 2001, pp. 87-89.

[5] Boehm, B. W., Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

[6] Chaplin, D., "Test First Programming," TechZone, 2001.

[7] Cornett, S., "Code Coverage Analysis," Bullseye Testing
Technology 2002.

[8] Dustin, E., Rashka, J., and Paul, J., Automated Software
Testing. Reading, Massachusetts: Addison Wesley, 1999.

[9] Gelperin, D. and Hetzel, W., " Software Quality Engineering,"
presented at Fourth International Conference on Software
Testing, Washington D.C., June 1987.

[10] George, B., "Analysis and Quantification of Test Driven
Development Approach," North Carolina State MS Thesis,
2002.

[11] Jeffries, R., Anderson, A., and Hendrickson, C., Extreme
Programming Installed: Addison Wesley, 2001.

[12] Jeffries, R. E., "Extreme Testing," presented at Software
Testing and Quality Engineering, 1999.

[13] Martin, C. R., Advanced Principles, Patterns and Process
of Software Development: Prentice Hall, 2001, in press.

[14] Muller, M. M. and Hagner, O., "Experiment about Test-first
programming," presented at Empirical Assessment In Software
Engineering EASE '02, Keele, April 2002.

[15] Royce, W. W., "Managing the development of large software
systems: concepts and techniques," presented at IEEE
WESTCON, Los Angeles, CA, 1970.

[16] Williams, L. A., The Collaborative Software Process. Salt
Lake City, UT: Department of Computer Science, 2000.

