
On the Value of Static Analysis for
Fault Detection in Software

Jiang Zheng, Student Member, IEEE, Laurie Williams, Member, IEEE,

Nachiappan Nagappan, Member, IEEE, Will Snipes, Member, IEEE,

John P. Hudepohl, and Mladen A. Vouk, Fellow, IEEE

Abstract—No single software fault-detection technique is capable of addressing all fault-detection concerns. Similarly to software

reviews and testing, static analysis tools (or automated static analysis) can be used to remove defects prior to release of a software

product. To determine to what extent automated static analysis can help in the economic production of a high-quality product, we have

analyzed static analysis faults and test and customer-reported failures for three large-scale industrial software systems developed at

Nortel Networks. The data indicate that automated static analysis is an affordable means of software fault detection. Using the

Orthogonal Defect Classification scheme, we found that automated static analysis is effective at identifying Assignment and Checking

faults, allowing the later software production phases to focus on more complex, functional, and algorithmic faults. A majority of the

defects found by automated static analysis appear to be produced by a few key types of programmer errors and some of these types

have the potential to cause security vulnerabilities. Statistical analysis results indicate the number of automated static analysis faults

can be effective for identifying problem modules. Our results indicate static analysis tools are complementary to other fault-detection

techniques for the economic production of a high-quality software product.

Index Terms—Code inspections, walkthroughs.

�

1 INTRODUCTION

NO single fault-detection technique is capable of
addressing all fault-detection concerns [40]. One such

fault-detection technique is static analysis, the process of
evaluating a system or component based on its form,
structure, content, or documentation [16], which does not
require program execution. Inspections are an example of a
classic static analysis technique that relies on the visual
examination of development products to detect errors,1

violations of development standards, and other problems
[16]. Tools are increasingly being used to automate the
identification of anomalies that can be removed via static
analysis, such as coding standard noncompliance, uncaught
runtime exceptions, redundant code, inappropriate use of

variables, division by zero, and potential memory leaks. We
term the use of static analysis tools automated static analysis
(ASA). Henceforth, the term inspection is used to refer to
manual inspection. ASA may enable software engineers to
fix faults before they surface more publicly in inspections or
as test and/or customer-reported failures. In this paper, we
report the results of a study into the value of ASA as a fault-
detection technique in the software development process.

The study was a research partnership between North

Carolina State University and Nortel Networks. Since 2001,

Nortel has included inspection and ASA in its development

process for over 33 million lines of code (LOC). In our

research, we examined defect data from three large-scale

Nortel software products (over three million LOC in total)

written in C/C++ that underwent various combinations of

inspection and ASA. We had so much available data that

we used the Goal-Question-Metric (GQM) paradigm [2] to

motivate and focus our data collection and analysis. GQM is

a goal-driven method which can be used to keep metrics

programs in alignment with business and technical goals;

our study was in alignment with Nortel’s goals.
The goal of the study was to determine whether automated

static analysis can help an organization economically improve the

quality of software products. This goal can be restated utilizing

the GQM process goal template [9]:

Analyze the final product

for the purpose of improvement

with respect to final product quality and cost

from the viewpoint of the organization

in the context of Nortel Networks network service

products

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006 1

. J. Zheng, L. Williams, and M.A. Vouk are with the Department of
Computer Science, North Carolina State University, Raleigh, NC 27695.
E-mail: {jzheng4, lawilli3, vouk}@ncsu.edu.

. N. Nagappan is with Microsoft Research, Redmond, WA, 98052.
E-mail: nachin@microsoft.com.

. W. Snipes and J.P. Hudepohl are with Nortel Networks, Software
Dependability Design (SWDD), Research Triangle Park, NC 27709.
E-mail: {wbsnipes, hudepohl}@nortelnetworks.com.

Manuscript received 12 July 2005; revised 31 Jan. 2006; accepted 28 Feb.
2006; published online DD Apr. 2006.
Recommended for acceptance by D. Rombach.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0197-0705.

1. A human error leads to insertion of a physical fault into a software
product element (e.g., specifications, design, code, test-case, etc.), this fault
may propagate (in the form of one or more defects) to the executable code.
When such a defect (or combination of defects) is encountered during
software execution, software system may enter an error-state. This error-
state may or may not persist, and may or may not be masked. When this
error state (or a combination of time-separated error-states) results in an
observable anomaly, we say that a failure has occurred [16]. In this paper,
we may use terms defect and fault interchangeably.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

We broke this research goal into seven questions. Each of
these questions, including the metrics collected and
analyzed to formulate the answer, will be discussed in
detail in Section 4 of this paper. In general, each of the seven
questions is independent of the other questions and has its
own unique set of metrics. The questions are as follows:

. Q1: Is ASA an economical means of software fault
detection?

. Q2: Will my delivered product be of higher quality if
ASA is part of the development process?

. Q3: How effective is ASA at detecting faults
compared with inspection and testing?

. Q4: Can ASA be helpful for identifying problem
modules?

. Q5: What classes of faults and failures are most often
detected by ASA, by inspection, or by testing? What
classes of defects escape to customers?

. Q6: What kinds of programmer errors are most often
identified via ASA?

. Q7: Can ASA be used to find programming errors that
have the potential to cause security vulnerabilities?

The rest of this paper is organized as follows: Section 2
provides background information. Section 3 discusses the
implementation of ASA at Nortel, our data collection and
analysis procedures, and limitations of our study. Section 4
reviews our findings on each of the seven research
questions. Finally, Section 5 and Section 6 present the
conclusions and future work, respectively.

2 BACKGROUND

In this section, we provide an overview of ASA tools and
provide background on our classification scheme choice to
answer Q5.

2.1 Automated Static Analysis Tools

ASA can be used as an added fault-detection filter in the
software development process. ASA tools automate the
identification of certain types of anomalies, as discussed
above, by scanning and parsing the source text of a program
to look for a fixed set of patterns in the code. ASA utilizes
control flow analysis, data flow analysis, interface analysis,
information flow analysis, and path analysis of software
code. There is a range of programmer errors which can be
automatically detected by ASA, and there are some that can
never be detected by ASA [33], [40]. Additionally, one study
of ASA tools indicates that each tool seems to find different,
sometimes nonoverlapping, bugs [37]. Although detected
anomalies are not always due to actual faults, often they are
an indication of an error.

An important benefit of ASA tools is that they do not
necessitate execution of the subject program yet infer results
applicable to all possible executions [33]. As such, ASA can
complement the error-detection facilities provided by
language compilers. ASA tools are particularly valuable
for programming languages like C that do not have strict
type rules; the checking the C compiler can do is limited.

There is a range of ASA tools and services deployed for
C/C++ code. For example, FlexeLint2 checks C/C++ source
code to detect errors, inconsistencies, nonportable con-

structs, and redundant code. FlexeLint is a Unix-based tool
(akin to the Window-based PC-lint). Reasoning’s3 Illuma is
a static analysis-based service that finds defects in C/C++
applications. Organizations send their code to Reasoning.
Reasoning performs the ASA, removes false positives, and
produces a report. Illuma identifies reliability defects that
cause application crashes and data-corruption. Examples of
the C/C++ error classes detected by Illuma include: NULL
pointer dereferencing, out of bounds array access, memory
leaks, bad deallocation, and uninitialized variables. Kloc-
work4 has two ASA tools, inForce and GateKeeper. inForce
performs static analysis of source code to supply metrics for
identifying potential defects, security flaws, and code
optimizations. GateKeeper analyzes the source code archi-
tecture strengths and weaknesses and provides assessment
details on code quality, hidden defects, and maintainability
costs. Types of defects identified include actual relation-
ships among modules (as compared to intended relation-
ships), code clusters (cyclic relationships), high-risk code
files and functions, potential logical errors, and areas for
improvement.

PREfix [28] analysis is based on the call graphs of a
program which are symbolically executed. The PREfast [28]
tool is a “fast” version of the PREfix tool where certain
PREfast analyses are based on pattern matching in the
abstract syntax tree of the C/C++ program to find simple
programming mistakes. PREfix/PREfast are used to find
defects, such as uninitialized use of variables, NULL
pointer dereferences, the use of uninitialized memory, and
double freeing of resources.

An important issue with the use of ASA tools is the
inevitability of the tool reporting significant amounts of
false positives or bugs that the program does not contain
upon a deeper analysis of the context. There can be as many
as 50 false positives for each true fault found by some static
analysis tools [35]. The FindBugs tool [14] reports a low of
only 50 percent false positives. Often, static analysis tools
can be customized and filters can be established so that
certain classes of faults are not reported, reducing the
number of false positives. Some organizations, such as
Nortel, contract a prescreening service to identify and
remove false positives in the static analysis output prior to
involvement by their own programming teams.

2.2 Fault Classification Schemes

To answer Q5, we classify the defects that can be detected
via ASA using an established taxonomy. Each ASA tool
defines its own unique defect types. However, these defect
types are related to the lower-level types of faults that can
be identified by ASA, and our goal in choosing a taxonomy
is to place faults detected by ASA in the context of the entire
development process.

Fault classification schemes (taxonomies) are intended to
have categories that are distinct, i.e., orthogonal, and to
remove the subjectivity of the classifier [20]. There are
several fault classification schemes presented in the
literature. Basili et al. [3] proposed a classification scheme
in research on requirements defects. The scheme consists of

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

2. http://www.gimpel.com/html/products.htm.
3. http://www.reasoning.com.
4. http://www.klocwork.com.

five defect classes: Omission, Incorrect Fact, Inconsistency,
Ambiguity, and Extraneous Information. Travassos et al.
[39] tailored the five defect classes to object-oriented design
in 1999. Schneider et al. [38] researched the defect
classification scheme for fault detection in user requirement
document, and Ackerman et al. [1] developed another
defect classification scheme for requirements defects.

IEEE also provides a classification scheme of anomalies
found in software and its documentation [17]. The
mandatory first level of IEEE classification is Logic
problem, Computation problem, Interface/timing problem,
Data handling problem, Data problem, Documentation
problem, Document quality problem, and Enhancement.
The first five of these classes may all be injected in the
coding or low-level design phase. As a result, the IEEE
classification scheme does not clearly point toward the
phase of development in which the fault was injected. The
Beizer taxonomy [4] offers a comprehensive means of
classifying faults. However, we were interested in identify-
ing when in the development process the fault was injected,
and Beizer’s classification required more detailed informa-
tion than we were provided in our Nortel data.

The goal of IBM’s Orthogonal Defect Classification
(ODC) [8] scheme is to categorize defects such that each
defect type is associated with a specific stage of develop-
ment. El Emam et al. [10] investigated the defect classifica-
tion scheme that has been applied in ODC, indicating the
use of this defect classification scheme is, in general,
repeatable in many areas of software engineering. ODC
has eight defect types. Each defect type is intended to point
to the part of the development process that needs attention.
The relationships between these defect types and process
associations are shown in Table 1, which is adapted from
[8]. Therefore, the ODC scheme can be used to indicate the
development phase in which a defect was injected into the
system. In our research, we analyzed software faults and
failures and assigned each an ODC category.

3 CASE STUDY DETAILS

In this section, we describe how ASA was used at Nortel
and the products included in the data analysis and the
limitations of the case study.

3.1 ASA at Nortel

Nortel provides communications products to commercial
customers. Beginning in 2001, the Software Dependability
Design (SWDD) group at Nortel began to work with
development teams to include ASA in their development
process prior to releasing products to customers. Depend-
ing upon the team, ASA could be done prior to inspection,

after inspection but prior to system test, or during system
test. For most product groups, the transition to using ASA is
done in two phases: start-up and in-process.

In the start-up phase, the SWDD group works closely
with the transitioning team to establish a clean baseline of
the product. The most recently released product (consid-
ered Release N-1) undergoes ASA. Because the initial
static analysis run for a product is likely to yield an
excessive amount of false positives, the total list of
warnings is sent to a prescreening service. The SWDD
has an extended, usually contracted, core team of
prescreeners. Nortel has also developed centralized, in-
house expertise in the use of ASA tools and in the
screening of the faults. Similarly to inspections, the
efficacy of static analysis prescreening is dependent upon
the screeners’ skills and experiences. However, the skill
and experience of the prescreeners can be programming
language-centric rather than domain-specific.

The prescreeners scrutinize the raw warnings and read
code to analyze why the warnings are generated. Addi-
tionally, we noticed that the screeners recorded some
obvious errors in the code that could not have been
detected by the ASA tools. For example, faults with type
“Logic Error and Typo” and “Wrong Output Message”
were noted. These types of faults could not be caught by a
tool and must have been identified by the screeners
manually examining the code. However, only a few such
faults were logged in the final report, and they have little
impact on the overall analysis. According to data of
whether the ASA-identified faults are fixed or not, these
prescreeners were able to reduce the false positive rate to
approximately 1 percent. The prescreening also may have
eliminated some real faults. However, these false negatives
are difficult to identify.

The SWDD and development teams receive the post-
screening report and fix the true faults that have been
identified, beginning with the most severe faults. Some
defects are left to be fixed in maintenance releases or later
releases because they do not impact customer-observable
behavior or critical functions. Once the higher priority true
ASA faults have been fixed (considered to be the release N),
the product undergoes ASA again (on release N) to make
sure the defects were fixed. The release N is then considered
to be the “clean baseline.” This start-up phase typically
takes between two and six months, depending on the
team’s release cycles.

Once the team has been through the start-up phase, ASA
is an additional fault-detection filter in the development
process and ASA is done in-process. Only new and changed
code undergoes ASA from this point forth, and ASA is then
often run by the developers without the involvement of
prescreeners. Depending upon the developer, the frequency
of doing ASA varies. ASA can be run when a component is
complete, or a developer can run the ASA tools more
incrementally as code is being developed.

Researchers and practitioners in Japan used a similar
phased approach of introducing ASA prior to system test [27].
At first, a support group worked closely with development
organizations, introducing ASA into their process, develop-
ing filters to reduce false positives, andprioritizing ASAfaults

ZHENG ET AL.: ON THE VALUE OF STATIC ANALYSIS FOR FAULT DETECTION IN SOFTWARE 3

TABLE 1
ODC Defect Types and Process Associations, Adapted from [8]

to fix. Ultimately, development groups used ASA more
autonomously. Through this process, they reduced static
analysis-detectable faults from a high of 11.8 percent of
system test failures to 0 percent [27].

3.2 Data Collection

We collected and analyzed fault data of three large-scale
network service products. Data analysis consisted of faults
reported by over 200 inspectors and testers, and by
customers, for over three million LOC written in C/C++
developed at Nortel Networks. As will be discussed, each of
these projects underwent a different combination of ASA,
inspections, and testing. ASA or inspection may or may not
have been conducted, and ASA could have been done prior to
inspection, prior to test, or during test. FlexeLint, Reasoning’s
Illuma, and Klocwork’s inForce and GateKeeper are some of
the ASA tools and services used by Nortel. These static
analysis tools are representative commercial tools which are
used to detect errors in C/C++ source code [32]. In this study,
the number of faults and their variety (in terms of types of
faults) identified by Flexelint was about two times that
identified by Klockwork, and about four times that identified
by Reasoning’s Illuma. Therefore, we based much of our
analysis on the Flexelint faults.

The first two Nortel products we analyzed, henceforth
called Product A and Product B, both underwent ASA.
However, inspections were not performed on Product A.
For Product B, the inspection faults were communicated via
e-mail, not archived, and thus could not be analyzed. Data
for several releases were available for the third product,
which is referred to as Product C. We analyzed one release
(C.0) that underwent inspection only because it was
developed prior to instituting ASA. The following two
releases (C.1 and C.2) underwent both ASA and inspec-
tions. In this case, release C.1 is considered as the release
N-1 and C.2 is the release N and the “clean baseline.” For
Products A, B, C.1, and C.2, the ASA faults were sent to a
prescreening service. The faults that were analyzed in our
research were the true positives that remained after the
prescreening. For each release, we scrutinized and classified
a multitude of ASA faults, inspection records, and Change
Request (CR) records. A CR was created for each test and
customer-reported failure. The summary of the data that
was analyzed for each product is shown in Table 2.

3.3 Limitations

There are certain limitations to our research. First, we
classify faults into ODC categories based upon our
subjective assessment of fault descriptions and of the
ASA defect types. This categorization is most subjective in

our analysis of customer-reported failure CR data. Fre-
quently, causal analysis (or root-cause analysis) data was
not available in the information provided for the CR failures.
Therefore, most CRs were classified post hoc as Function
failures due to the lack of information on exactly what was
fixed and the cause of the initial fault. Second, the defects
were classified without considering the severity or impact
of the potential failure. Additionally, our results focused on
the use of three ASA tools (FlexeLint, Klockwork, and
Reasoning’s Illuma), and therefore may not be representa-
tive of all ASA tools. These tools were chosen for analysis
because of the availability of large amounts of fault data
from Nortel. Finally, the results were obtained from Nortel
Networks, and therefore relate to very large network
service software systems written in C/C++. These results
may not be representative of other types of software beyond
those of Nortel Networks.

4 RESULTS

In this section, we use the Nortel Networks data to provide
insight into the seven questions posed in Section 1. The
basic goal is to determine whether ASA can help an organization
economically improve the quality of a software product.
Sections 4.1 through 4.7 each address one of the seven
questions. Using the GQM, in each section, the question is
restated and the metrics that were collected and analyzed
are listed. Metrics data are analyzed,and the implications of
this data analysis to the posed question are discussed.

4.1 Economics of Fault Detection

. Q1: Is ASA an economical means of software fault
detection?

. Metrics: Quantity of defects found by inspection, quantity
of defects found by ASA, preparation time, meeting time,
static analysis tool cost, prescreening cost.

Finding and fixing a problem in a later phase that was
injected in an early phase of software development can be
expensive because the longer the defects resides in the
product, the larger the number of elements that will likely
be involved in a fix [5]. Ideally, one would like to not inject
problems in the first place. Barring that, one would like to
detect them in the same phase in which they are injected.
This is the reason why inspections and other non-execution-
based methods of fault-detection are used in practice in
phases where code execution is may not be an option. In
general, inspections are considered an affordable fault
detection technique [34], [36]. Hence, we use inspection as
our reference point in our examination of the affordability

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

TABLE 2
Summary of the Data Analyzed

of ASA. Industrial data has shown that inspections are
among the most effective of all verification and validation
(V&V), measured by the percentage of faults typically
removed from an artifact via the technique [36].

Most software inspections are performed manually.
Software review meetings require preparation and the
simultaneous attendance of all participants (or inspectors).
The effectiveness of inspections is dependant upon satisfy-
ing many conditions, such as adequate preparation, readi-
ness of the work product for review, high quality
moderation, and cooperative interpersonal relationships
[34]. The effectiveness of ASA is less dependent upon these
human factors due to the automation. However, ASA is not
free from this dependence due to the need to identify the
true defects from all those identified by the tool.

To determine the average cost of detecting a fault via
inspections, we manually examined inspection records for
Releases C.1 and C.2, a total of approximately 1.25 million
LOC. Economic analysis was not performed on other
products or releases because of the lack of either
ASA faults or inspection data, as discussed in Section 3.2.

The inspection records for Releases C.1 and C.2 con-
tained quantifications of preparation time and meeting time
of each inspection participant and a profile of the faults,
including location, type, complexity, and description
identified in the inspection meeting. To obtain the average
dollar cost of detecting a fault, we added the preparation
and meeting time by all participants and divided by the
number of faults found in the inspection, as shown in (1),
where n is the number of inspection participants. We
computed the cost per fault considering an average annual
base salary plus benefits cost of $150,000 per inspection
participant.5

Avg: Cost of Fault DetectionInspection ¼
Pn

i¼1

ðminutes Time MeetingþTime PreparingÞnððSalaryþBenefitsÞ=minuteÞ

Quantity Faults Found :

ð1Þ

We computed the average cost of fault detection for ASA
based on the cost of the tool license, the prescreening cost to
eliminate false positives (on a per LOC basis, which is how
the screeners are paid), and the number of remaining true
positive faults. Some additional costs that were difficult to
capture are the cost of learning how to use the ASA tools
and computing resources to run the tool. This lack of
information is a limitation of our findings, but we do not
believe it would reverse our findings. Once an engineer
learns to run the ASA tool, this cost can be amortized over

all future projects. No additional computing resources were
purchased specifically for running ASA. The computation is
shown in (2):

Avg: Cost of Fault DetectionASA ¼
Tool Licenceþ ðCost Per LineÞðLOCÞ
Quantity True Positive Faults Found

:
ð2Þ

To protect proprietary information, we only provide a
ratio of the costs, as shown in (3).

Cost Benefit :
Avg: Cost of Fault DetectionASA

Avg: Cost of Fault DetectionInspection
: ð3Þ

Based upon our data, the computed ratios are 0.72 for C.1
and 0.61 for C.2, indicating that the cost of ASA per detected
fault is of the same order of magnitude as the cost of
inspections per fault detected. These results indicate that ASA

is a relatively affordable fault detection technique.

4.2 Final Product Quality

. Q2: Will a product be of higher quality if ASA is part of
the development process?

. Metrics: Quantity of defects found by system testing,
quantity of defects found by customer testing, churned
thousand lines of code (KLOC).

Table 3 provides a comparison of the final product
quality. The measure used for final product quality is the
number of total failures (both test and customer-reported
failures) per churned KLOC (KLOCC). We use failures per
KLOCC as a measure of final product quality because it
reflects the impact of change on the product. In the table, we
use Product C.0 as the baseline product because this
product/version was developed prior to ASA being
instituted into Nortel’s process. We normalized the failures
per KLOCC metric relative to that of Product C.0 to protect
Nortel’s proprietary quality information. This gives us the
Relative Quality column of Table 3.

As indicated, there is a wide variance in the relative
quality of the products. As a result, our analysis did not

provide conclusive results about whether ASA will aid in the

production of a higher quality product.

4.3 Fault Detection Yield

. Q3: How effective is ASA at detecting faults compared
with inspection and testing?

. Metrics: Quantity of ASA faults, quantity of inspection
faults, quantity of test failures, quantity of customer-
reported failures.

ZHENG ET AL.: ON THE VALUE OF STATIC ANALYSIS FOR FAULT DETECTION IN SOFTWARE 5

5. Based upon Nortel recourse costs.

TABLE 3
Relative Final Product Quality

6 Product C.0 is the baseline because it was developed prior to ASA process.

We examined fault detection yield as a measure of how
well a fault detection practice identifies faults present in the
artifact. Fault-detection yield refers to the percentage of
defects present in the code at the time of the fault-detecting
practice that were found by that practice [15], as shown in (4).

Fault detection yield ¼
ð100ÞðQuantity Faults Detected by PracticeÞ

Total Faults Detected by Practice and by Following Phases
:

ð4Þ

Fault detection yield cannot be precisely computed until the
product has been used extensively in the field and this
measure decreases as more defects are found in the field.
Additionally, we calculated the software defect removal
efficiency [18] as a measure of how well a process removes
faults before delivery. Software defect removal efficiency is
the percentage of total bugs eliminated before the release of
a product, as shown in (5). High levels of customer
satisfaction correlate strongly with high levels of defect
removal efficiency [18].

Defect removal efficiency ¼
ð100ÞðQuantity Faults Detected Except for Field FailureÞ

Total Faults and Failures Detected
:

ð5Þ

For all products, ASA was performed during test with the
exception of Product C.1. The faults/failures yield and
process yield are shown in Table 4. For Product C.2, the
fault detection yield of test is relatively low because, in this
case, ASA was performed during the test so that the
denominator of (4) includes the number of ASA faults.
However, the Defect Removal Efficiency for Product C.2 is
99.4 percent, which is essentially the same as that of other
releases. Research indicates that top companies can achieve
a greater than 95 percent software defect removal efficiency
for commercial software [18], [19]. The values of Defect
Removal Efficiency in the table are higher than industry
benchmarks, indicating the high final quality of these
products/releases.

These results indicate that the defect removal yield of ASA is

not significantly different from that of inspections. The defect

removal yield of execution-based testing is two to three times

higher than that of ASA and therefore may be more effective at

finding the defects remaining by that phase.

4.4 Problem Module Identification

. Q4: Can ASA be helpful for identifying problem modules?

. Metrics: Quantity of ASA faults for individual modules,
quantity of test failures per module, quantity of customer-
reported failure per module.

Software metrics have previously been used with multi-
ple linear regression analysis to predict quality [26], [29].
Similarly to the LOC metric [25], code churn can also be
used as an indicator of quality factors, such as fault-
proneness [23], where code churn is a measure of the
number of changed lines of code between two (not
necessarily consecutive) releases of the code. Munson and
Khoshgoftaar [30] used discriminant analysis for classifying
programs as fault-prone with a large medical-imaging
software system. Discriminant analysis is a statistical
technique used to categorize modules into groups based
on the metric values. The classification resulting from
Munson’s use of discriminant analysis/data splitting was
fairly accurate. There were 10 percent false positives among
the high quality programs (incorrectly classified as fault-
prone) and 13 percent false negatives (incorrectly classified
as not fault-prone) among the fault-prone programs. Other
studies have demonstrated the use of metrics and dis-
criminant analysis to identify problem modules [12], [13],
[21], [22], [23], [24].

Other studies have also analyzed the ability of ASA
defects to identify problem modules. Static analysis defects
were used to predict the prerelease defect density of
Windows Server 2003 [31]. The research demonstrated a
positive correlation between the ASA defect density and
prerelease testing defect density and that discriminant
analysis of ASA defects could be used to separate high
from low-quality components with 83 percent accuracy.
Additionally, a preliminary investigation had been done on
static analysis at Nortel [32]. Failure data from two releases
of a large 800 KLOC product that underwent ASA during
test were analyzed [32]. In addition, the ASA faults, code
churn, and deleted LOC were used to form a multiple
regression equation, which was effective for predicting the
actual defects of the product. Finally, discriminant analysis
indicated that ASA faults, code churn, and deleted LOC
could be used as an effective means of classifying fault-
prone programs. We continued this research by examining
the potential of ASA faults alone for the identification of
problem modules.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

TABLE 4
Defect Removal Yield for Different Fault Removal Techniques

7 The test yield and process yield could not be calculated due to lack of information on whether a failure is detected by test or customer.

First, a Spearman rank correlation is computed on

Product B to examine the relationship between ASA faults

and the quantity of test/customer-reported failures at the

module level. As a commonly used robust correlation

technique [11], Spearman rank correlation can be applied

even when the association between elements is nonlinear.

We examined data of Product B because only Product B had

clear module partition information. The numbers of

ASA faults and test/customer-reported failures were

counted for each module of Product B. The partition of

the modules was provided by the development group. The

correlation results of the ASA faults with test failures,

customer-reported failures, and total failures is shown in

Table 5. The relatively large correlation coefficient and

small p-values indicate that a statistically significant8

correlation exists between ASA faults and test/customer-

reported failures. These results indicate that, when a

module has a large quantity of ASA faults, the module is

likely to be problematic in test and in the field.
Afterward, discriminant analysis was used as a tool to

detect the fault-prone modules. In all the analysis, if there is

no customer-reported failure in a module, then the module

is classified as not fault-prone; otherwise, it is classified as

fault-prone. The metrics used in the discriminant analysis

include the following:

. the number of ASA faults,

. the number of test failures,

. the ASA fault density (number of ASA faults/source
lines of code (SLOC)),

. the test failures density (number of test failures/
SLOC),

. the normalized ASA faults density (number of ASA
faults/churned SLOC), and

. the normalized test failures density (number of test
failures/churned SLOC).

We built the discriminant function using either one of the

above metrics only or the combination of two of them.

Table 6 illustrates the summary of the discriminant

functions built using the 21 models.

For each analysis, the eigenvalue and the percentage of

correctly classified modules are shown in the table. The

eigenvalue is a measure of how good the discriminative

function is with respect to the classification of the data. The

larger the eigenvalue, the greater the discriminatory power

of the model. We found that the model using the number of

ASA faults and the number of test failures, henceforth

referred to as Model 1, has the highest eigenvalue,

indicating the discriminative ability of this model is the

best. With this model, 87.5 percent of the modules are

correctly classified. Additionally, 91.7 percent of the

modules are correctly classified if the model uses the

number of ASA faults and normalized test failures density,

or the number of test failures and normalized test failures

density, henceforth referred to as Models 2 and 3. However,

the eigenvalues of these two models are relatively smaller

than that of Model 1. The model parameters of the

discriminant functions for Models 1 through 3 are shown

in Table 7. For all three best models, no high quality module

was incorrectly classified as fault-prone. However, 33 per-

cent of the fault-prone modules were incorrectly classified

as not fault-prone using Model 1, and there were 22 percent

false negatives among the fault-prone modules using

Model 2 and Model 3.

Alternately, 83.3 percent of the modules are correctly

classified if the model uses the number of ASA faults only.

Although this model has a lower eigenvalue and less

accuracy, this model can be used to identify the fault-prone

modules earlier in the development process, prior to test.

The model using the number of ASA faults only is more

valuable for more affordable corrective action and may

have more utility than one that needs test data.

These statistical analysis results indicate that the number of

ASA faults in a module can be a fairly good measure of fault-

prone module identification prior to test. Developers can test

and rework more on the identified fault-prone modules to

improve their reliability.

4.5 Classes of Faults and Failures

. Q5: What classes of faults and failures are most often
detected by ASA, by inspection, or by system testing?
What classes of defects escape to customers?

ZHENG ET AL.: ON THE VALUE OF STATIC ANALYSIS FOR FAULT DETECTION IN SOFTWARE 7

8. All statistical analysis was performed using SPSS1. SPSS does not
provide statistical significance beyond three decimal places. So, (p = 0.000)
should be interpreted as (p < 0.0005). Statistical significance is calculated at
95 percent of confidence.

TABLE 5
Spearman Rank Correlation for Product B (for Modules)

. Metrics: Quantity of ASA faults by ODC type, quantity

of inspection faults by ODC type, quantity of system test

failures by ODC type, quantity of customer-reported

failures by ODC type.

We counted and classified (according to the ODC) the

ASA and inspection faults and the test and customer-

reported failures for the three products. In this section, we

present our classification of the types of defects detected by

each of these phases.

4.5.1 ASA Faults

Each fault detected by ASA had a documented problem

report that contained detailed information, such as fault

descriptions, location, preconditions, impact, severity, sug-

gestion, and code fragment. The report for each problem was

manually read, and then faults were classified according to

ODC categories. Finally, the faults were counted to form a

profile of faults. A summary of the results of this analysis is

shown in Table 8. For the purpose of protecting proprietary

information, only percentage is displayed in the tables.

Because Flexelint was the only tool used on all three products,

the table also shows a comparison of Flexelint only.

The results shown in the table indicate that ASA is effective at

identifying two of the eight ODC defect types: Assignment and

Checking. As we discussed in Section 2.4, Checking defects

would most likely be injected in the low level design or

coding phase, while Assignment defects would be injected

in the coding phase. Therefore, it is logical that static

analysis would be able to detect these types of faults.

4.5.2 Inspection Faults

At Nortel, inspections are guided by checklists. Unlike ASA

faults, not all inspection faults were logged formally. Some of

the faults were communicated via e-mails and could not be

analyzed. However, the minutes of inspection meetings for

Product C were well-recorded in text files via a recording tool.

Product C.1 and C.2 underwent both ASA and inspection,

while product C.0 underwent inspection only. Similarly to

the analysis on ASA, every inspection file was manually read,

and inspection faults were counted and classified according

to ODC. The results of this classification are shown in Table 9.

Note that inspectors also documented comments about code

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

TABLE 6
Summary of the Discriminant Analysis

TABLE 7
Model Parameters of the Discriminant Functions

TABLE 8
Mapping of ASA Faults Identified by All ASA Tools

to ODC Defect Types

readability and/or maintainability, such as indentation,

redundant code segment, naming convention, coding stan-

dard, and programming style, in the inspection records.

These readability/maintainability comments account for

about 25-35 percent of the statements in inspection records,

but are not recorded in the ODC classification.

The results indicate that inspection most often identifies

Algorithm, Documentation, and Checking faults. Approxi-

mately 90 percent of all the faults belong to these three

types, and the distribution between these three types seems

to remain relatively constant regardless of when ASA was

performed.

4.5.3 System Test Failures

A detailed CR was created for each test and customer-

reported failure. Besides the information similar to those in

ASA fault reports, dynamic information, such as failure

status, fix and submit history, and discussion minutes, was

updated frequently during the process of fault removal. A

priority rating was also assigned to the failure by the tester

or by an agreement between design management and test

management. In general, the priority indicates the impact of

the failure on the operation of the system. However,

sometimes the priority may be elevated if an important

customer or many customers are affected. The scale is from

1 to 4, with 1 being the highest priority. Priority 1 means the

system will not perform its critical mission and Priority 2

indicates the failure will affect service or will have

significant functional impact. The remaining lower priority

CRs (Priorities 3 and 4) report the failures that do not

impact a release or milestone declaration.

Because only the CR data for Product B contained clear

and detailed fix information, we investigated the test

failures and customer-reported failures for Product B. The

CR data for Product A did not distinguish between system

test and customer-reported failures. The CR data for

Product C did not provide enough information for

distinguishing by ODC. We examined CRs and scrutinized

the description of the problem being addressed by the

updates and the description of the resulting code fix to

classify the failures for Product B. The results of our ODC

classification of test failures can be found in Table 10.

Overall, 85 percent of the test failures are of a high

priority. The results indicate that a large majority of test failures

are in the Function and Algorithm types.

Customer-reported failures were classified for Product B

as well. The summary of the results is shown in Table 11.

Ninety-seven percent of the customer-reported failures are

high priority failures.

The results indicate that almost all failures surfaced by

customers can be classified as Function or Algorithm defects.

However, this phenomenon may be the result of a lack of

data in the CR record to more accurately classify the defect

and when the defect might have been injected. Function

defects are injected in the design phase and can be hard to

detect until system testing, when functionality is validated

against requirements. Algorithm defects are injected in the

low-level phase and had the potential to be found in earlier

V&V practices.

The comparison between different fault removal filters

is shown in Table 12. The results indicate that ASA tools

predominantly identify two ODC defect types: Checking and

ZHENG ET AL.: ON THE VALUE OF STATIC ANALYSIS FOR FAULT DETECTION IN SOFTWARE 9

TABLE 9
Classification of Inspection Faults

TABLE 10
Priority Summary of CR Data for Product B (Test Failures)

Assignment. Approximately 90 percent of all the faults

identified by inspection belong to Algorithm, Documentation,

and Checking faults. A large majority of test/customer-reported

failures are in Function and Algorithm types. Additionally, if

ASA is performed prior to inspection (such as was done

with Product C.1), fewer Checking faults are identified by

the inspection.

4.6 Programmer Errors

. Q6: What kinds of programmer errors are most often
identified via ASA? How often does ASA find these
errors?

. Metrics: Quantity of ASA faults classified by defect type.

To avoid the impact of definition difference in defect

types among different static analysis tools, data of only one

tool was analyzed to answer this question. We chose

Flexelint data because Flexelint was the only tool that was

used on all three products and more types of faults were

identified by Flexelint. We merged the same or very similar

static analysis faults for all three products to perform an

aggregate analysis of the types of defects identified by the

tool. The detailed summary of fault types is shown in the

Appendix, ranked with the most frequent faults at the top

of the list. While FlexeLint can detect more than 800 defect

types, only 33 of these were found in our projects. Severity

information was added by the prescreeners. The faults were

given one of the following severity ratings based on their

potential failure impact.

. Critical: A fault that could cause an application core
dump, service outage, or system reboot.

. Major: A fault that could cause a segmentation fault
or performance degradation, such as memory leaks,
resource leaks, data corruption.

. Minor: A fault that may result in erratic and
unexpected behavior, but may have little impact on
the system.

. Coding Standard: Code that violates a coding
standard that has the potential to decrease the
maintainability and readability of the software. (Note:
No coding standard violations were identified.)

Our results are consistent with the 80-20 rule/Pareto Principle

in that a great majority of the faults identified by ASA are

produced by a few key types of programmer errors, as shown in

Table 13. “Possible use of NULL pointer” is the most often

identified fault via ASA, accounting for approximately 46 percent

of all faults. About 90 percent of faults are focused on 10 fault

types, no matter what level of severity. To improve the code

quality in future projects, we can use this information as

feedback to programmers so that they pay more attention to

these specific types of errors.

A limitation of this analysis is that the screening of the

ASA output and the assigning of a severity rating is a

manual process and subjective. Different products were

screened and evaluated by different screeners. Therefore,

the same or a very similar fault might be evaluated as

different severity. For example, the fault “Possible Use of

Null Pointer” occurred many times in all three products.

Most of the faults in this type were assessed as Critical

faults in Product A and Product C.1. However, screeners for

Product B deemed 72.3 percent of faults in this type were

Minor faults and 92.8 percent of faults in this type were

considered Major faults in Product C.2.

4.7 Identification of Security Vulnerabilities

. Q7: Can ASA be used to find programming errors that
have the potential to cause security vulnerabilities?

. Metrics: Quantity of ASA faults classified by defect type.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

TABLE 11
Priority Summary of CR Data for Product B (Customer-Reported Failures)

TABLE 12
Mapping of Defects Found by Different Filters to ODC Defect Types

Increasingly, static analysis tools are being used to

identify security vulnerabilities [6], [7]. Attackers have the

ability to exploit the programmer errors to violate a security

policy. We highlight the programmer errors that were

found by ASA that have the potential to cause security

vulnerabilities if proper protections are not in place, as

shown in Table 14. These types of programmer errors have

been documented as attacks on in SecurityFocus.9 The ASA

tool does not have contextual information and, as such, can

produce false positives related to security. For example,

cross site scripting is a domain-dependent classification that

applies to Web applications and not to the types of

embedded systems in our Nortel study.

These results indicate that ASA can be used to find

programming errors that have the potential to cause security

vulnerabilities.

5 CONCLUSIONS

To examine the value of automated static analysis, we

analyzed the automated inspection faults, manual inspec-

tion faults, and CR data for three large Nortel software

products. Our analysis provides some results that can be

beneficial to the understanding and utilization of ASA,

subject to the limitations discussed in Section 3.3.

. The cost of ASA per detected fault is of the same
order of magnitude as the cost of inspections per
fault detected, which indicates that ASA is a
relatively affordable fault detection technique.

. The defect removal yield of ASA is not significantly
different from that of inspections. The defect
removal yield of execution-based testing is two to
three times higher than that of ASA and, therefore,
may be more effective at finding the defects
remaining by that phase.

. The number of ASA faults in a module can be a
fairly good measure of fault-prone module identifi-
cation prior to test.

. The mapping of ASI faults to ODC defect types
indicated that ASI tools predominantly identify two
ODC defect types: Checking and Assignment.

. Approximately 90 percent of all the faults identified
by manual inspection belong to Algorithm, Docu-
mentation, and Checking faults.

ZHENG ET AL.: ON THE VALUE OF STATIC ANALYSIS FOR FAULT DETECTION IN SOFTWARE 11

TABLE 14
Security Vulnerabilities Identified by ASA

9. http://www.securityfocus.com, owned by Symantec.

TABLE 13
Pareto Effect in ASA Faults

. A large majority of test/customer-reported failures
is in Function and Algorithm types.

. The 80-20 rule/Pareto effect found in faults and
failures distribution analysis can be considered as
useful feedback to help us improve the code quality
in future projects.

. A large percentage of programmer errors detected
by ASA have the potential to cause security
vulnerabilities.

In conclusion, our results indicate that ASA is an economical

complement to other verification and validation techniques.

6 FUTURE WORK

In this research, our results focused on the use of three ASA

tools for C/C++ programs. We will examine the defect data

identified by more static analysis tools for other program-

ming languages besides C/C++. Also, we will enhance the

economic analysis by using more data and more refined

methods or models considering the severity or impact of the

defects. Additionally, the raw output generated by static

analysis tools can be examined to find out whether there is

an indicator in the raw tool output that could help focus the

screening, such as focus on a specific file when a particular

set of warnings occur.

APPENDIX

Detailed classification of static analysis faults ordered by

total occurred times (percent of total static analysis faults

found) can be found in Table 15.10

ACKNOWLEDGMENTS

The authors would like to thank the North Carolina State

University (NCSU) Software Engineering reading group for

their helpful suggestions on this paper. In particular, they

would like to thank Michael Gegick for his help on the

security aspects of this paper and Kiem Ngo for his help

with data collection and for explaining aspects of the Nortel

development process. This work was funded in part by a

Nortel-funded NCSU Center for Advanced Computing and

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

TABLE 15
Detailed Classification of Static Analysis Faults Ordered by Total Occurred Time (% of Total Static Analysis Faults Found)

10. Note: Static analysis tools assign a probability to certain warnings for
certain defect types. For example, defect type “Access of Out-of-bounds”
has three different probabilities of warnings (Likely, Possible, and
Conceivable). We grouped all these into one type—“Possible Access of
Out-of-bounds”.

Communications (CACC) enhancement grant. This material

is also based upon work supported by the US National

Science Foundation (NSF) under CAREER award Grant

No. 0346903. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the NSF.

REFERENCES

[1] A.F. Ackerman, L.S. Buchwalk, and F.H. Lewski, “Software
Inspections: An Effective Verification Process,” IEEE Software,
vol. 6, no. 3, pp. 31-36, May 1989.

[2] V. Basili, G. Caldiera, and D.H. Rombach, “The Goal Question
Metric Paradigm,” Encyclopedia of Software Eng., vol. 2, pp. 528-532,
1994.

[3] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S.
Sorumgard, and M.V. Zelkowitz, “The Empirical Investigation of
Perspective-Based Reading,” Empirical Software Eng. —An Int’l J.,
vol. 1, no. 2, 1996.

[4] B. Beizer, Software Testing Techniques. London: Int’l Thompson
Computer Press, 1990.

[5] B.W. Boehm, Software Engineering Economics. Prentice-Hall, 1981.
[6] B. Chess, “Improving Computer Security Using Extended Static

Checking,” Proc. IEEE Symp. Security and Privacy, pp. 160-173,
2002.

[7] B. Chess and G. McGraw, “Static Analysis for Security,” IEEE
Security & Privacy, vol. 2, no. 6, pp. 76-79, 2004.

[8] R. Chillarege, I.S. Bhandari, J. Chaar, M.J. Halliday, D.S. Moebus,
B.K. Ray, and M.Y. Wong, “Orthogonal Defect Classification—A
Concept for In-Process Measurements,” IEEE Trans. Software Eng.,
vol. 18, no. 11, pp. 943-956, Nov. 1992.

[9] C. Differding, B. Hoisl, and C.M. Lott, “Technology Package for
the Goal Question Metric Paradigm,” Fraunhofer Inst. for
Empirical Software Eng. Internal Report 281/96, Apr. 1996.

[10] K.E. Emam and I. Wieczorek, “The Repeatability of Code Defect
Classifications,” Proc. Ninth Int’l Symp. Software Reliability Eng.,
p. 322, Nov. 1998.

[11] N.E. Fenton and S.L. Pfleeger, Software Metrics. Boston: Int’l
Thompson Publishing, 1997.

[12] R. Hochman, T.M. Khoshgoftaar, E.B. Allen, and J.P. Hudepohl,
“Using the Genetic Algorithm to Build Optimal Neural Networks
for Fault-Prone Module Detection,” Proc. Seventh Int’l Symp.
Software Reliability Eng., pp. 152-162, 1996.

[13] R. Hochman, T.M. Khoshgoftaar, E.B. Allen, and J.P. Hudepohl,
“Evolutionary Neural Networks: A Robust Approach to Software
Reliability Problems,” Proc. Eighth Int’l Symp. Software Reliability
Eng., pp. 13-26, 1997.

[14] D. Hovemeyer and W. Pugh, “Finding Bugs is Easy,” Proc. Conf.
Object Oriented Programming Systems Languages and Applications
(OOSPLA) Companion, pp. 132-135, 2004.

[15] W.S. Humphrey, A Discipline for Software Engineering. Addison
Wesley, 1995.

[16] IEEE, “IEEE Standard Glossary of Software Engineering Termi-
nology,”IEEE Standard 610.12-1990, 1990.

[17] IEEE, “IEEE Standard Classification for Software Anomalies,”
IEEE Standard 1044-1993, 1993.

[18] C. Jones, “Software Defect Removal Efficiency,” Computer, vol. 29,
no. 4, pp. 94-95, Apr. 1996.

[19] C. Jones, Software Assessments, Benchmarks, and Best Practices.
Addison-Wesley, May 2000.

[20] D. Kelly and T. Shepard, “A Case Study in the Use of Defect
Classification in Inspections,” Proc. IBM Centre for Advanced Studies
Conf., pp. 7-20, 2001.

[21] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl, and S.J. Aud,
“Applications of Neural Networks to Software Quality Modeling
of a Very Large Telecommunications System,” Trans. Neural
Networks, vol. 8, no. 4, pp. 902-909, 1997.

[22] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl, and W. Jones,
“Classification Tree Models of Software Quality over Multiple
Releases,” Proc. 10th Int’l Symp. Software Reliability Eng., pp. 116-
125, 1999.

[23] T.M. Khoshgoftaar, E.B. Allen, K.S. Kalaichelvan, N. Goel, J.P.
Hudepohl, and J. Mayrand, “Detection of Fault-Prone Program
Modules in a Very Large Telecommunications System,” Proc. Sixth
Int’l Symp. Software Reliability Eng., pp. 24-33, 1995.

[24] T.M. Khoshgoftaar, E.B. Allen, A. Naik, W. Jones, and J.P.
Hudepohl, “Using Classification Trees for Software Quality
Models: Lessons Learned,” Int’l J. Software Eng. and Knowledge
Eng., vol. 9, no. 2, pp. 217-231, 1999.

[25] T.M. Khoshgoftaar and J.C. Munson, “The Lines of Code Metric as
a Predictor of Program Faults: A Critical Analysis,” Proc. 14th
Computer Software and Applications Conf. (COMPSAC), pp. 408-413,
1990.

[26] T.M. Khoshgoftaar, J.C. Munson, and D.L. Lanning, “A Compara-
tive Study of Predictive Models for Program Changes During
System Testing and Maintenance,” Proc. Ninth Int’l Conf. Software
Maintenance, pp. 72-79, 1993.

[27] N. Kikuchi and T. Kikuno, “Improving the Testing Process by
Program Static Analysis,” Proc. Asia-Pacific Software Eng. Conf.
(APSEC), pp. 195-201, 2001.

[28] J.R. Larus, T. Ball, M. Das, R. DeLine, M. Fahndrich, J. Pincus, S.K.
Rajamani, and R. Venkatapathy, “Righting Software,” IEEE
Software, vol. 21, no. 3, pp. 92-100, 2004.

[29] J.C. Munson and T.M. Khoshgoftaar, “Regression Modelling of
Software Quality: Empirical Investigation,” Information and Soft-
ware Technology, vol. 32, no. 2, pp. 106-114, 1990.

[30] J.C. Munson and T.M. Khoshgoftaar, “The Detection of Fault-
Prone Programs,” IEEE Trans. Software Eng., vol. 18, no. 5, pp. 423-
433, May 1992.

[31] N. Nagappan and T. Ball, “Static Analysis Tools as Early
Indicators of Pre-Release Defect Density,” Proc. Int’l Conf. Software
Eng. (ICSE), pp. 580-586, 2005.

[32] N. Nagappan, L. Williams, M. Vouk, J. Hudepohl, and W. Snipes,
“A Preliminary Investigation of Automated Software Inspection,”
Proc. IEEE Int’l Symp. Software Reliability Eng. (ISSRE), pp. 429-439,
2004.

[33] L. Osterweil, “Integrating the Testing, Analysis, and Debugging of
Programs,” Proc. Symp. Software Validation, 1984.

[34] A.A. Porter and P.M. Johnson, “Assessing Software Review
Meetings: Results of a Comparative Analysis of Two Experimental
Studies,” IEEE Trans. Software Eng., vol. 23, no. 3, pp. 129-145,
1997.

[35] Reasoning Inc. “Automated Software Inspection: A New Ap-
proach to Increase Software Quality and Productivity,” http://
www.reasoning.com/pdf/ASI.pdf, 2003.

[36] I. Rus, F. Shull, and P. Donzelli, “Decision Support for Using
Software Inspections,” Proc. 28th Ann. NASA Goddard Software
Eng. Workshop, p. 11, 2003.

[37] N. Rutar, C.B. Almazan, and J.S. Foster, “A Comparison of Bug
Finding Tools for Java,” Proc. IEEE Int’l Symp. Software Reliability
Eng. (ISSRE), pp. 245-256, 2004.

[38] G.M. Schneider, J. Martin, and W.T. Tsai, “An Experimental Study
of Fault Detection in User Requirements Documents,” ACM Trans.
Software Eng. and Methodology, vol. 1, no. 2, pp. 188-204, Apr. 1992.

[39] G.H. Travassos, F. Shull, M. Fredericks, and V.R. Basili, “Detecting
Defects in Object Oriented Designs: Using Reading Techniques to
Improve Software Quality,” Proc. Conf. Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), pp. 47-56,
Nov. 1999.

[40] M. Young and R.N. Taylor, “Rethinking the Taxonomy of Fault
Detection Techniques,” Proc. Int’l Conf. Software Eng., pp. 53-62,
1989.

Jiang Zheng received the BS degree from
Fudan University in 1999 and the MS degree
from North Carolina State University in 2005. He
is a third-year PhD student in the Computer
Science Department at North Carolina State
University under the supervision of Dr. Laurie
Williams. His research interests are software
testing, software quality assurance, and soft-
ware development processes. He is a student
member of the IEEE and a member of the ACM.

ZHENG ET AL.: ON THE VALUE OF STATIC ANALYSIS FOR FAULT DETECTION IN SOFTWARE 13

Laurie Williams received the PhD degree in
computer science from the University of Utah,
the MBA degree from Duke University, and the
BS degree in industrial engineering from Lehigh
University. She is an assistant professor in the
Computer Science Department of the College of
Engineering at North Carolina State University.
She leads the Software Engineering Realsearch
group and is also is also the director of the North
Carolina State University Laboratory for Colla-

borative System Development located in Engineering Building 2 and the
codirector of the NC State eCommerce education initiative. She worked
for IBM for nine years in Raleigh, North Carolina, before returning to
academia. Her office is located on the NCSU Centennial Campus. Her
current research interests include agile software development meth-
odologies and practices, collaborative/pair programming, software
reliability, and testing (particularly of secure applications). She is a
member of the IEEE.

Nachiappan Nagappan received the BTech
degree from the University of Madras in 2001
and the MS and PhD degrees from North
Carolina State University in 2002 and 2005,
respectively. He is a researcher in the Software
Reliability Research Group at Microsoft Re-
search. His research interests include software
reliability and measurement, statistical model-
ing, and defect analysis. He is a member of the
IEEE and the ACM.

Will Snipes received the BS degree in computer
science from North Carolina State University,
Raleigh, and holds a certification for Project
Management Professional (PMP) from the Pro-
ject Management Institute. He joined Nortel
Networks in 1992, working in DMS100 Product
Test Metrics and Measurements, where he
participated in the development of software
reliability engineering tools and methods for
Nortel Networks’ DMS100. Past work includes

developing and implementing a system to analyze characteristics of
software modules that relate to risk of field defects and predicting high-
defect risk areas of code and designing remediation programs to reduce
the risk of defects in very large software systems. He is currently
working with the Software Dependability Design program in the office of
the CTO. His interests include software failure modes analysis,
mathematical modeling of software reliability, software metrics, and
software failure rate prediction. He is a coauthor of several published
works, including papers for IEEE Communications, and the International
Switching Symposium 1997 (ISS ’97). He is a member of the IEEE.

John P. Hudepohl received the BS degree in
electronic engineering technology and commu-
nication arts from the University of Dayton,
Dayton, Ohio, in 1973, and the MS degree in
systems management from Florida Institute of
Technology, Melbourne, in 1985. He has over
30 years experience in the fields of reliability,
quality, and process improvement, managing
teams focused on design assurance, perfor-
mance analysis, software reliability, and tool

development with Cincinnati Electronics, ITT, and Nortel. He joined
Nortel in 1986, initiated the Enhanced Measures for Early Risk
Assessment of Latent Defects (EMERALD) project in 1993, received a
patent for Method and System for Dynamic Risk Assessment of
Software Systems, and is currently leader of the Software Dependability
Design Team in the Chief Technical Office organization. He has been
active in the IEEE Communications Society’s Network Quality and
Reliability Committee, and held the positions of vice chairman,
chairman, and chair emeritus.

Mladen A. Vouk received the PhD degree from
the King’s College, University of London, United
Kingdom. He is interim department head and a
professor of computer science, and associate
vice provost for information technology at North
Carolina State University, Raleigh. He has
extensive experience in both commercial soft-
ware production and academic computing. He is
the author/coauthor of more than 180 publica-
tions. His research and development interests

include software engineering, scientific computing, information technol-
ogy (IT) assisted education, and high-performance networks. He is
closely associated with the Computer Science Computer-Based
Education Laboratory and the Undergraduate and Graduate Networking
Laboratories. He is the cofounder, former codirector, and current
member of the Computer Science Software Systems and Engineering
Laboratory. He is the founder, former director, and current member of
the NC State Multimedia and Networking Laboratory. He is a member of
the CENTAUR Labs. He is a member and former Technical Director of
the NC State Center for Advanced Computing and Communication. He
is an associate graduate faculty member in the Department of Electrical
and Computer Engineering at NC State, an affiliated faculty member in
the BioMedical Engineering Department, and a member of the NC State
E-Commerce Faculty, NC State Information Security Faculty, NC State
Genomics Faculty, NC State Bioinformatics Program Faculty, and NC
State Operations Research Program Faculty. Dr. Vouk is a member,
former chairman, and former secretary of the IFIP Working Group 2.5 on
Numerical Software and a recipient of the IFIP Silver Core award. He is
an IEEE fellow and a member of the IEEE Reliability, Communications,
Computer, and Education Societies, and of the IEEE Technical
Committee on Software Engineering. He is a member of the ACM,
ASQ, and Sigma Xi. He is an associate editor of the IEEE Transactions
on Reliability, a member of the editorial board for the Journal of
Computing and Information Technology, and a member of the editorial
board for the Journal of Parallel and Distributed Computing Practices.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

