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ABSTRACT 

 

Anecdotal and qualitative evidence from industry indicates that two programmers 

working side-by-side at one computer, collaborating on the same design, algorithm, 

code, or test, perform substantially better than the two working alone.   Statistical evi-

dence has shown that programmers perform better when following a defined, repeatable 

process such as the Personal Software Process (PSP).  Bringing these two ideas to-

gether, the Collaborative Software Process (CSP) has been formulated.  The CSP is a 

defined, repeatable process for two programmers working collaboratively.  The CSP is 

an extension of the PSP, and it relies upon the foundation of the PSP.   

To validate the effectiveness of CSP, an experiment was run in 1999 with approxi-

mately 40 senior Computer Science students at the University of Utah.  All students 

learned both the CSP and the PSP.  Two-thirds of the students worked in two-person 

collaborative teams using the CSP to develop their programming assignments.  The 

other students worked independently using the PSP to develop the same assignments.  

Additionally, a significant amount of input and confirmation from professional engi-

neers who practice collaborative programming was factored into the research.  

The research contributed a defined, repeatable process, the Collaborative Software 

Process, for collaborative programming pairs.  The experiment validated the following 

quantitative findings about collaborative teams using the CSP: 
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1. Collaborative pairs spend approximately 15% more time than do individu-

als on the same task.  This additional time, however, is not statistically 

significant. 

2. Collaborative pairs achieve a higher quality level for programming prod-

ucts.  Pairs had 15% less defects in their code.  The higher quality level is 

statistically significant. 

3. Considering the long-term field support savings of higher quality pro-

gramming products, collaborative programming is cheaper for an 

organization than individual programming. 

4. Consistently, 95% of collaborative programmers asserted that they enjoy 

their work more and are more confident in their work than when they pro-

gram alone.  

Additionally, the research resulted in many qualitative findings about collaborative 

programming.  Most notable are the positive effects of increased problem solving skills, 

better designs, augmented learning, and improved team building for collaborative pairs. 

 Organizations in which the engineers consistently switch partners also note increased 

communication, enhanced teamwork, and reduced product risk. 
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CHAPTER 1 

  INTRODUCTION 

Quality is free.  It's not a gift.  What costs money are the unquality things 
-- all the actions that involve not doing jobs right the first time. . .Quality 
is not only free, it is an honest-to-everything profit maker.  [1] 

1.1 Research Motivation 

In the early days of computing, most of the programming was done by scientists try-

ing to solve specific, relatively small mathematical problems.  The programming model 

that emerged from these days has been called the “code-and-fix model . . . [which] de-

notes a development process that is neither precisely formulated nor carefully controlled 

[2].”    Ghezzi and others [2] describe the code-and-fix model as consisting of two steps: 

1) write code 

2) fix code to eliminate errors, enhance existing functionality, or add new feature 

Through time, computers became cheaper and more common.  More and more people 

started using them to solver larger and larger problems, still using and evolving the 

original programming model.   

Alas, the code-and-fix model, often still used today, is not adequate to handle the 

complexities of large scale software development.  Some 40 years ago, the term “Soft-

ware Crisis” emerged to describe the software industry’s inability to provide customers 

with high quality products on schedule.  “The average software development project 
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overshoots its schedule by half; larger projects generally do worse. And, some three 

quarters of all large systems are “operating failures” that either do not function as in-

tended or are not used at all [3].”  

. . . the failure of the code-and-fix process model lead to the recognition 
of the so-called software crisis . . . In particular, the recognition of a 
lack of methods in the software production process led to the concept of 
the software life cycle and to structured models for describing it in a 
precise way in order to make the process predictable and controllable.  
[2] 
 

What is notable is the progression in the past 40 years of the visibility of the Soft-

ware Crisis from mainly scientists and software developers to the general public.  

“Today, software is working both explicitly and behind the scenes in virtually all as-

pects of our lives, including the critical systems that affect our health and well-being 

[4].”  Certainly, Y2K brought the impact of software problems to the forefront!   

Unfortunately, advances in software development techniques have been thwarted by 

exponential increases in software complexity and size.  The challenge, then, lies with 

bridging this gap and devising techniques to successfully handle this ever-increasing 

complexity.  The motivation behind this research is to make an advance toward the end 

of the Software Crisis – to help the software industry more reliably produce high quality 

software.   

1.2 Pair-Programming 

   Each day, software applications grow larger and more complicated; these applica-

tions are then used in an infinite myriad of user systems.   Perhaps, then, it is best for the 

complexity of these applications to be tackled by two humans at a time.  The idea of 

pair-programming, two programmers working collaboratively on the same design, algo-
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rithm, code, or test, has independently emerged several times over the last decade.  The 

practice of pair-programming is gaining popularity, primarily with the rise in the eX-

treme Programming methodology [5].   

Each collaborative pair sits shoulder-to-shoulder at one computer during all phases 

of development.  One is the ‘designated driver.’  This engineer has control of the mouse, 

keyboard, or writing utensil and is actively creating the design, code, or test.  The non-

driver is observing the work of the driver and identifying tactical and strategic deficien-

cies in their work.  Explicitly, the pair periodically takes turns being the driver and the 

non-driver.  To date, anecdotal [5, 6] and preliminary statistical [7] has suggested that 

pairs produce higher quality code faster than code produced by individual programmers.  

 (Note:  the terms pair-programming and collaborative programming are used inter-

changeably throughout this document.) 

1.3 Software Process 

Successful software engineering requires the application of engineering 
principles guided by informed management.  The principles must them-
selves be rooted in sound theory.  While it is tempting to search for 
miracles and panaceas, it is unlikely that they will appear.  The best 
course of action is to stick to age-old engineering principles.  There sim-
ply are no “silver bullets.” [2] 

In the early engineering days ships sank and bridges collapsed [8].  Now, these engi-

neering fields have matured enough that these types of accidents rarely occur because 

their procedures are grounded in age-old engineering principles.  Generally in these 

fields, customers are able to enumerate very specifically the acceptable parameters and 

tolerance levels; these parameters and tolerance levels are clearly understood by the en-

gineers.  Then, the engineers are equipped with tools and mathematical methods to 
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understand the consequences of these specifications and to design accordingly.  Lastly, 

the production and manufacturing processes in these mature fields are studied exten-

sively in order to reliably, predictably, and efficiently produce high quality products.       

Software engineering, a relatively young discipline, still seeks these verified proce-

dures and solutions.  Some computer scientists research design patterns to capture 

proven solutions to common design problems.   Other computer scientists research 

mathematical methods for verifying the correctness of software algorithms.  Lastly, in-

spired by the work of Deming [9] and Juran [10], the software engineering community 

has realized that it takes a high-quality software development process to yield high-

quality products.  Process standards such as ISO 9000 and the Capability Maturity 

Model (CMM) have been developed to aid organizations achieve more predictable re-

sults by guiding them to incorporate proven procedures into their process.  Companies 

that have embraced the standards advocated in ISO 9000 and CMM have typically 

shown tremendous improvements.  For example, by “improving its development proc-

ess according to CMM “maturity,” Hughes Aircraft improved its productivity by 4 to 1 

and saved millions of dollars [4].”   

1.4 The Research Approach 

This research combines the proven need for an established, documented software 

process with the novel incorporation of pair-programming into such a process.  A new 

software process, The Collaborative Software Process (CSP), was synthesized as a de-

fined, repeatable method for two collaborating software engineers to develop software.  

In the CSP, recommended steps for each stage of the development process – from analy-
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sis to test – is guided by detailed scripts, templates and forms.  Information provided on 

the templates and forms can be analyzed to provide measurement-based feedback to the 

collaborative pair.  The pair uses this feedback in order to improve the effectiveness of 

their own pair-process. 

The research hypothesis was that collaborative pairs following the CSP would out-

perform individual engineers using a proven process similar to the CSP, the Personal 

Software Process (PSP) [11] designed for solo programmers.  The specific metrics used 

to compare the performance of individuals vs. collaborative pairs are cycle time, 

productivity and quality.  In order to validate the hypothesis, a structured experiment 

was run at the University of Utah in 1999 with an upper-level software engineering 

class.  In the experiment, collaborative pairs and individual students completed the same 

assignments.  The above metrics were used to compare the performance of all the 

students. 
1.5 Research Contributions 

Through this research, a defined, repeatable process for collaborative programmers, 

the CSP, was synthesized and validated.  The superiority of this process versus a known, 

proven, process, the PSP, was proved via a structured experiment.  The experiment 

showed that together two pair-programmers produce software almost as fast (total 

elapsed time for the two) as one engineer.  More notably, they produce software of sta-

tistically significantly higher quality.  Because the two pair-programmers work in 

tandem, their cycle time is essentially half of that of individual engineers.  Additionally, 

engineers prefer to work collaboratively.  Through the documentation of the CSP, the 
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process can now be used by other organizations seeking to maximize the performance of 

their engineers. 

       Recently, an overwhelming amount of anecdotal and qualitative evidence has 

supports the use of pair-programming as a means of producing software of higher qual-

ity on schedule.  However, many still resist the practice, assuming that pair-

programming will prohibitively double software development costs.  The only experi-

mental variable in the structured experiment of this research was the use/non-use of 

collaborative programming.  Therefore, the results can also be used to quantitatively 

support general anecdotal claims of the benefits of collaborative programming in pro-

gramming environments that do not use the CSP.   

1.6 Summary of Remaining Chapters 

Chapter 2 provides a survey of related work.  It discusses the two established soft-

ware methodologies that inspired much of this work, the Personal Software Process [11] 

(PSP) and eXtreme Programming (XP).  It discusses other anecdotal, qualitative, and 

quantitative emergences of the benefits of pair-programming.  

Chapter 3 defines the details of the Collaborative Software Process (CSP).  It de-

scribes the process steps and the rationale behind CSP.  A discussion compares PSP to 

CSP. 

Chapter 4 discusses qualitative findings of the research.  First, theoretical and ob-

served reasons for the benefits of collaborative programming are discussed.  Then, 

factors for successful collaboration are enumerated. 
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Chapter 5 presents convincing quantitative evidence that CSP and collaborative pro-

gramming are superior to PSP and individual programming.  This quantitative analysis 

is based on data obtained from a carefully planned empirical study of advanced under-

graduates at the University of Utah.  (Details of this experiment are explained in 

Appendix A.)  Benefits to the software firm and to the engineers are quantified. 

Chapter 6 summarizes the conclusions and contributions of the dissertation.  Chap-

ter 7 suggests future research to further validate and collaborative programming. 

Six appendices provide detailed background information to support each of the 

seven chapters.    

 

 



 

 

CHAPTER 2 

  A SURVEY OF RELATED WORK 

The Collaborative Software Process was formulated after investigating the contribu-

tions of and successes in several areas of software engineering and cognitive science.   

2.1 The Personal Software Process (PSP) 

Structurally, the largest influence comes from the Personal Software Process [11]  

(or PSP), authored by Watts S. Humphrey of the Software Engineering Institute (SEI).  

PSP defines a software development framework that includes defined operations or sub-

processes and measurement and analysis techniques to help engineers understand their 

own skills in order to improve their own personal performance. Each sub-process has a 

set of scripts giving specific steps to follow and a set of templates or forms to fill out to 

ensure completeness and to collect data for measurement-based feedback. This meas-

urement-based feedback allows the programmers to measure their work, analyze their 

problem areas, and set and make goals. For example, programmers record information 

about all the defects that they remove from their programs. They can use summarized 

feedback on their defect removal to become more aware of the types of defects they 

make to prevent repeating the same mistakes. Additionally, they can examine trends in 

their defects per thousand lines of code (KLOC) and are able to see when they are mak-

ing real improvement.  
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PSP has several strong philosophies. The first is that the longer a software defect 

remains in a product, the more costly it is to detect and remove it. Therefore, thorough 

design and code reviews are performed for most efficient defect removal. The second 

philosophy is that defect prevention is more efficient than defect removal. Careful de-

signs are developed, and data is collected to give additional input on where the 

programmer should adjust their own personal software process to prevent future defects.  

Lastly, PSP rests on the notion that the best estimates, and therefore the best com-

mitments, for schedule and defect rates can be made with a historical database of 

information. Data regarding how long previous products took to develop and defect 

rates are kept in a database for use with history-based estimation procedures. These 

processes and philosophies work together to produce excellent results. According to 

Ferguson, Humphrey and others at the SEI,  

"SEI’s data on 104 engineers shows that, on average, PSP training re-
duces size-estimating errors by 25.8 percent and time-estimating errors 
by 40 percent.  Lines of code written per hour increased on average by 
20.8 percent, and the portion of engineers’ development time spent com-
piling is reduced by 81.7 percent. Testing time is reduced by 43.4 
percent, total defects by 59.8 percent, and test defects by 73.2 percent 
[12]."   

The PSP is a defined, repeatable process for an individual engineer; the CSP is a de-

fined, repeatable process for two programmers working collaboratively.  The CSP is an 

extension of the PSP, and it relies upon the foundation of the PSP. 

2.2 eXtreme Programming 

CSP is also heavily influenced by success factors of the eXtreme Programming [5] 

(or XP) methodology, developed primarily by Smalltalk code developer and consultant 
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Kent Beck with colleagues Ward Cunningham and Ron Jeffries.  XP does not have sta-

tistical evidence, as does PSP, to prove its effectiveness. The evidence of XP’s success 

is highly anecdotal, but is so impressive that it has aroused the curiosity of many highly 

respected software engineering researchers and consultants. The largest example of its 

accomplishment is the sizable Chrysler Comprehensive Compensation system launched 

in May 1997. The payroll system pays some 10,000 monthly-paid employees and has 

2,000 classes and 30,000 methods [13]. Additionally, programmers at Ford Motor 

Company, spent four unsuccessful years trying to build the Vehicle Cost and Profit Sys-

tem (VCAPS) using a traditional waterfall methodology.  Then, the engineers duplicated 

that system, this time successfully, in less than a year using Extreme Programming [14]. 

XP strongly advocates the use of pair programming.  All production code is written 

with a partner, to the extent that even prototyping done solo is scrapped and re-written 

with a partner. Working in pairs, the engineers perform a continuous code review, not-

ing that it is amazing how many obvious but unnoticed defects another person at your 

side notices. This is, perhaps, the ultimate implementation of PSP’s "defect prevention" 

and "efficient defect removal" philosophies.  

XP’s requirements gathering, resource allocation and design practices are a radical 

departure from most accepted methodologies, such as PSP or the Rational Unified Proc-

ess [15].  Customer requirements are written as fairly informal "User Story" cards, a 

rough estimate of required resources is assigned to the cards, these are assigned to a 

programming pair, and coding begins.  With no formal design procedures or discussions 

on overall system planning or architecture, the pair determines which code in the ever-

enlarging code base needs to be added or changed and then does it, without asking any-
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one “permission”.  This practice requires the use of "Collective Code Ownership" 

whereby any programming pair can modify or add to any code in the code base, regard-

less of the original programmer.  

Programming pairs routinely "refactor" the code base by continuous change and en-

hancement.  They view the code as the self-evolving design – they do not spend time on 

a design document and, therefore, have strict self-documenting code style and comment 

guidelines.  XP also has particularly thorough testing procedures.  Comprehensive test 

cases are written and automated prior to actual code changes.  The results of running 

these automated new tests and previous, regression test cases determine if the 

change/enhancement to implement a User Story has been done correctly without harm-

ing the implementation of other User Stories.  While departing significantly from 

traditional development practices, anecdotally, XP appears to be very effective. Addi-

tionally, programmers report that developing with XP practices is much more exciting 

and enjoyable than with traditional processes.  From XP, CSP incorporates the success-

ful use of pair programming and automated test case generation and execution. 

2.3 Distributed Cognition 

While those practicing XP are the largest known group of pair programmers, the 

idea of pair programming did not originate with XP.  In 1991 Nick Flor, a masters stu-

dent of Cognitive Science, reported on distributed cognition in a collaborative 

programming pair he studied.  Distributed cognition is a field of cognitive science based 

on the following beliefs:   

“Anyone who has closely observed the practices of cognition is struck by 
the fact that the “mind” rarely works alone.  The intelligences revealed 
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through these practices are distributed – across minds, persons, and the 
symbolic and physical environment . . . Knowledge is commonly socially 
constructed, through collaborative efforts toward shared objectives or by 
dialogues and challenges brought about by differences in persons' per-
spectives. [16]" 

 Flor recorded via video and audiotape the exchanges of two programmers working 

together on a software maintenance task.  He correlated specific verbal and non-verbal 

behaviors of the two under study with known distributed cognition theories. 

1. The Sharing of Goals and Plans:  Collaborating programmers at-
tempt to maintain a shared set of goals and plans during 
interactions.  Goals specify what needs to be done, and plans specify 
the means by which the goals are achieved. . . The sharing of goals 
and plans leads to several different system properties:  efficient 
communication, searches through larger spaces of alternatives, and 
shared memory for 'old' alternative plans. 

2. Efficient Communication:  Conversational details do not have to be 
fully specified, thus minimizing the amount of talk required to encode 
that which must be communicated.  The current state of the problem 
combined with the programmers’ shared goals and plans are suffi-
cient to determine the intent of most utterances. 

3. Searching Through Larger Spaces of Alternatives:  A system with 
multiple actors possesses greater potential for the generation of 
more diverse plans for at least three reasons:  (1) the actors bring 
different prior experiences to the task; (2) they may have different 
access to task relevant information; (3) they stand in different rela-
tionships to the problem by virtue of their functional roles. . . An 
important consequence of the attempt to share goals and plans is that 
when they are in conflict, the programmers must overtly negotiate a 
shared course of action.  In doing so, they explore a larger number of 
alternatives than a single programmer alone might do.  This reduces 
the chances of selecting a bad plan. 

4. Shared Memory for Old Plans:  A memory for old alternative plans is 
useful in situations where the subjects are exploring a course of ac-
tion, decide on it being unproductive, and have to backtrack to one of 
the possibly many, older alternative plans.  A single programmer 
alone may forget one of these alternative plans [17].    
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2.4 Organizational Pattern 

In 1995 Jim Coplien published the "Developing in Pairs" Organizational Pattern 

[18].  Organizational Patterns make explicit the patterns of organization, process, and 

introspection that most highly productive organizations exhibit.  

Using the emerging discipline of generative pattern languages, we can 
capture the patterns underlying successful projects and use them to es-
tablish organizational structures and practices that will improve the 
prospects for success in a new software development organization. [18] 

The "Developing in Pairs" pattern professes that organizations should pair compati-

ble designers to work together – that together, they can produce more than the sum of 

the two individually. 

2.5 Other Studies 

     Two other studies support the use of collaborative programming.  Larry Constan-

tine, a programmer, consultant, and magazine columnist reports on observing "Dynamic 

Duos" during a visit to P. J. Plaugher’s software company, Whitesmiths, Ltd.  He im-

mediately noticed that at each terminal were two programmers working on the same 

code. He reports,  

Having adopted this approach, they were delivering finished and tested 
code faster than ever . . . The code that came out the back of the two 
programmer terminals was nearly 100% bug free . . . it was better code, 
tighter and more efficient, having benefited from the thinking of two 
bright minds and the steady dialogue between two trusted terminal-
mates . . . Two programmers in tandem is not redundancy; it’s a direct 
route to greater efficiency and better quality. [19] 
  

Lastly, in 1998 Temple University Professor Nosek reported on his study of 15 full-

time, experienced programmers working for 45 minutes on a challenging problem, im-
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portant to their organization, in their own environment, and with their own equipment. 

Five worked individually, ten worked collaboratively in five pairs. Conditions and mate-

rials used were the same for both the experimental (team) and control (individual) 

groups. This study provided statistically significant results, using a two-sided t-test. "To 

the surprise of the managers and participants, all the teams outperformed the individual 

programmers, enjoyed the problem-solving process more, and had greater confidence in 

their solutions." The groups completed the task 40% more quickly and effectively by 

producing better algorithms and code in less time. The majority of the programmers 

were skeptical of the value of collaboration in working on the same problem and 

thought it would not be an enjoyable process. However, results show collaboration im-

proved both their performance and their enjoyment of the problem solving process [7].  

  



 

 

CHAPTER 3 

COLLABORATIVE SOFTWARE PROCESS DEFINITION 

As discussed in the previous chapter, the framework of the CSP is modeled after 

that of the PSP.   Because of this, the motivation and rationale behind the development 

of the Personal Software Process will be briefly discussed.  Then, the major elements of 

the Collaborative Software Process will be defined and described.  Lastly, the PSP and 

the CSP will be compared. 

3.1 Process Rationale   

     The Software Engineering Institute worked with leading software organizations 

to define the Capability Maturity Model for Software [20] (or CMM).  The purpose of 

the CMM is to provide “an orderly way for organizations to determine the capabilities 

of their current process and to establish priorities for improvement.  It does this by es-

tablishing and defining five levels of progressively more-mature process capability 

[11].”  A more mature process is increasingly defined, repeatable and controlled and is 

more likely to predictably produce high quality software products.  In increasing level of 

maturity, these five levels are:  Initial, Repeatable, Defined, Managed and Optimizing.   

     Each of these levels has key process areas (KPA) defined.  The CMM provides 

goals and example practices for each of these KPAs to guide organizations in achieving 

higher levels of process maturity.  Organizations have internal or external process re-
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views to determine their maturity level of their current process and to formulate im-

provement plans for improving their maturity level.  Many times, software organizations 

that contract programming services are asked to evaluate and disclose their CMM level. 

 CMM level can be an important factor in such an organization’s competitive position.  

Humphrey, the creator of the PSP, was also instrumental in the formulation of the 

CMM.         

    Humphrey then essentially brought the philosophy of the CMM/process maturity to 

the level of the individual engineer by the formulation of the PSP.  The PSP specifically 

addresses many of the KPAs.  PSP defines a framework for an individual programmer 

striving to help their organization achieve a higher level of maturity.  Undoubtedly, im-

provements in personal capability also improve organizational performance. 

     The PSP follows an evolutionary improvement approach. A student or professional 

learning to fully integrate the PSP into their process begins at Level 0.0 and progresses 

in their process maturity seven levels to Level 3.0.  Each level incorporates new skills 

and techniques into their process – skills and techniques that have proven to improve the 

quality of the software process and to improve the estimating accuracy of the engineer.   

The PSP is defined as a set of 77 process scripts, forms, templates, standards, and 

checklists.  By consistently using this documentation, a software engineer follows a 

proven, disciplined software development process in which he or she receives meas-

urement-based feedback on their process effectiveness.  The scripts enumerate process 

steps that should be followed.  Forms and templates are used to obtain and store neces-

sary data and information from the engineer in a thorough and complete manner.  A 
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coding standard is defined to guide a consistent coding style.  Checklists are provided to 

aid in review processes.    

The CSP also incorporates the evolutionary learning approach of PSP and has six 

levels.  These levels are summarized in Figure 1 and defined below.  The CSP consists 

of 45 scripts, forms, templates, standards and checklists, which are documented in Ap-

pendix B.   Generally, these are based on the PSP [11], but have been adapted for 

simplicity and to allow for the direction and analysis of a pair of programmers.  Addi-

tionally, the CSP changes several aspects of PSP, particularly in the analysis and design 

phases.  The CSP also incorporates seven sets of instructions and templates directly, un-

changed from the PSP.  These are referred to but are not included in this document.  As 

with the PSP, the CSP defines a framework for the collaborative pair to help their or-

ganization achieve a higher level of maturity.       

Figure 1:  CSP Evolutionary Learning Approach 

Level CSP 
0.0 Baseline / Current Process 
0.1 Coding Standard 

Size Measurement 
Process Improvement Plan 

1.0 Analysis  (Use Case) 
CRC Card Design Brainstorming 
Design  

1.1 Code Review 
Design Reviews 
Testing 
Measurements 

2.0 Size Estimating 
Resource Estimating 

2.1 Task Planning 
Schedule Planning 

 

Baseline 
 
     
     Quality Management

 
 
 

 
 
 
    Project Management 
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3.2 CSP Definition 

3.2.1    CSP Level 0:  Collaborative Baseline 

3.2.1.1     CSP Level 0.0 

CSP Level 0.0 does not impose or recommend any additional process steps; the en-

gineers use their “natural” process.  In Appendix B, Table 5 (page 106), Table 6 (page 

107), and Table 7 (page 108) document Process, Planning, and Development scripts 

which enumerate steps for the engineer to take.  However, these steps are very general 

and would have to be followed by any engineer who developed software.  Examples of 

these steps are:  1)  Produce a design to meet the requirements; 2)  Implement the de-

sign; 3)  Compile the program.   

The purpose of this level is to provide baseline measurements from which to com-

pare results of future process improvements.  Therefore, the only addition to their 

“natural” process is to record time and defect data about their development work.  Table 

11 - Table 14 (pages 113 - 116) are forms and instructions for recording this informa-

tion.  The engineers must do their best to diligently record the amount of time they spent 

on each phase of the development process and to record information about the defects 

they remove during their review, compilation and testing phases.  

The Postmortem script (Table 8 on page 110) prescribes the completion of the Pro-

ject Plan.  First, prior to beginning development, the pair makes an overall estimate of 

how long it will take to develop the product.  The recorded time and defect data are 

summarized in the Project Plan (Table 9 on page 111) for use in analyzing the pair’s 

process and for making future estimates.   The table easily facilitates the comparison 
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between how long the pair thought it would take to develop a product and how long it 

actually took (by phase).    

One other important thing happens at this level, particularly if the engineers have 

never worked in pairs before – they jell as a team.  Most programmers have been condi-

tioned to work individually – and switching to collaborative programming is certainly 

an adjustment.  Many engineers venture into their first pair programming experience 

skeptical that they would actually benefit from collaborative work.  They wonder about 

coordinating schedules, the added communication that will be required, about adjusting 

to the other’s working habits, programming style, and ego, and about disagreeing on as-

pects of the implementation.      

In industry, this adjustment period has historically taken hours or days, depending 

upon the individuals.  In the university experiment run as part of this research, the stu-

dents generally adjusted after the first assignment, though some reported an even shorter 

adjustment period.  It doesn’t take many victorious, clean compiles or declarations of 

“We just got through our test with no defects!” for the teams to celebrate their union – 

and to feel as one jelled, collaborative team.  

3.2.1.2     CSP Level 0.1 

At the CSP Level 0.1, several small process improvements are made.  The engineers 

begin to follow a coding standard.  Groups of individuals who follow a coding standard 

can be expected to have similar coding styles.  This is particularly beneficial for collabo-

rative pairs as each takes turns adding to and reviewing their partner’s code.  It is also 

advantageous for software maintenance when field support must read and understand 
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the code of many different programmers.  (A sample C++ coding standard is docu-

mented in Table 23 on page 128).   

Engineers also count and record their number of lines of code as a measure of soft-

ware size.  To no avail, software engineers perpetually debate the best measure of 

software size.  While lines of code may be an imperfect measure of product size it is 

satisfactory for meeting the goals of the CSP.  When used in conjunction with a coding 

standard, particular collaborative pairs can use the line of code measurement to compare 

relative size of their various programs.     

The Project Plan is updated to incorporate recording the line of code measurement.  

Additionally, the estimate of development time is entered at the process phase (Plan-

ning, Design, Code, Compile, Test, Postmortem) level.  Pairs estimate the proportion of 

development time they expect to spend by phase by reviewing the historical data they 

began recording while using CSP Level 0.  The Project Plan and Postmortem (Table 18 

- Table 20 on pages 121 - 124) are adjusted accordingly.   

Lastly, after each program, pairs reflect on their process – what went well and what 

didn’t go so well about the software development process they actually used for that 

program – and record these observations in the Process Improvement Proposal (PIP).  

The purpose of this document is to impress upon the pair what they should and should 

not do in the future in order to be most effective.  The PIP and the instructions for com-

pleting the PIP are in Table 21 and Table 22 (pages 126 - 127). 
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3.2.2    CSP Level 1:  Collaborative Quality Management 

Why spend all this time finding and fixing and fighting when you could 
prevent the incident in the first place? 
                                                           [P.B Crosby in Quality is Free [1]] 

 

Collaborative programmers get used to working in pairs and taking some very basic 

measurements in CSP Level 0.  The attention is turned toward introducing particular 

activities to improve product quality in Level 1.  “The goal of quality management in 

the PSP is to find and remove all defects before the first compile [21];” CSP shares this 

noble goal. 

3.2.2.1     CSP Level 1.0 

In Level 1.0, attention is focused on the first stages of the development process, 

analysis and design.  The analysis phase deals with understanding the problem, goals 

and constraints of the program.  [22] enumerates the goals of performing analysis: 

• = To understand the problem that the eventual software system, if any, 
should solve 

• = To prompt relevant questions about the problem and the system 
• = To provide a basis for answering questions about specific properties 

of the problem and system 
• = To decide what the system should do. 
• = To decide what the system should not do. 
• = To ascertain that the system will satisfy the needs of its users, and de-

fine customer acceptance criteria   
• = To provide a basis for the development of the system 

  
In the CSP, analysis is performed through the development of use cases [23] based 

on the customer requirements.  The use cases are documented using the UML Use Case 

Model [24].  The first step in developing the use cases is to identify the actors, the peo-

ple or systems that are external to the system but act upon or with the system.  Then, the 
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use cases themselves can be discovered.  A use case is a sequence of transactions per-

formed by a system that yields a measurable result of values for a particular actor.  A 

use case typically represents major functionality that is complete from beginning to end. 

 Through the identification of use cases, scenarios, which are used later in the process, 

are identified.  “A use case is an abstraction that describes all possible scenarios involv-

ing the described functionality.  A scenario is an instance of a use case describing a 

concrete set of events. . . Scenarios are used as examples for illustrating common cases -

- their focus in on understandability.  Use cases are used to describe all possible cases -- 

their focus is on completeness [25].”      

In the CSP, each use case is explored by completing a Use Cases Flow of Events 

template [26] as shown in Table 28 (on page 135) in Appendix B.  The completion of 

the Flow of Events serves to clarify the engineer’s thoughts on what the system should 

and should not do.  The Use Case Model and Flow of Events are both very readable and 

understandable by non-technical customers.  They, therefore, can be shown to customers 

to ascertain that the system meets the customer requirements.  The development of these 

artifacts leads to the early stages of design as relationships between the use cases are 

explored.  Therefore, the goals of analysis, as stated above, are achieved through the 

creation of the Use Case Model and Use Case Flow of Events. In Appendix C, the re-

quirements for a small program are developed into a Use Case Model and Flow of 

Events. 

The Use Case Flow of Events is also highly beneficial for black box test case devel-

opment.  Engineers can identify many paths through the flow of events and devise test 

cases to validate the correctness of the program for that set of conditions.  The “Alterna-
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tive Flows” identified in the Flow of Events is very beneficial for identifying error con-

ditions which must be handled in the program and tested to ensure proper handling.  

Once analysis is completed in the CSP, a CRC card brainstorming exercise is held 

as a predecessor to high-level design.  (CRC stands for Class, Responsibility, and Col-

laborator)  The exercise is performed to facilitate the process of identifying the system's 

objects and their public interfaces [27].  Index cards are used to identify classes, their 

responsibilities, and which other classes they must collaborate with to perform their ser-

vices.  A format of a typical CRC card is shown below in Figure 2.  (Often the class 

attributes are written on the back of the card.)    

The scenarios identified by the use cases are “role played” using the cards – to en-

sure that the classes perform the necessary services to complete each scenario.  It is best 

to choose a set of use cases that look like they would touch a related set of classes.  

(Sets of scenarios that touch different sets of classes should have their own CRC card 

exercise.  This segmentation allows for more manageable brainstorming sessions.)   

Figure 2:  CRC Card Format 

Class Name 

Main Class Responsibility (one sentence) 

Responsibilities                Collaborators 

. . .                                           . . .  
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A CRC card session proceeds as follows.   A particular scenario is chosen from a 

use case (e.g. one particular flow through the use case flow of events).  The engineers 

role play what the code would need to do in order for that scenario to complete success-

fully.  When a new class would need to be created to fulfill the requirements of the 

scenario, a blank card is put on the table.  The name and purpose of the class is written 

on the card.  Once classes are identified, any responsibility identified as part of the sce-

narios walkthrough is written down on the class’s card under the Responsibility section. 

 If the class must collaborate with another class in order to complete its responsibility, 

that class is listed across from the responsibility in the Collaborator column.  A repre-

sentative set of scenarios must be role played.  For each scenario role play, participants 

point to or pick up cards that would be used to handle the responsibility if the classes 

and responsibilities have already been defined and/or initiate the creation of new classes 

and responsibilities. 

It is expected that classes will be identified and later discarded during the course of 

the brainstorming session.  The exercise allows several design alternatives to be on the 

table at one time.  Classes that seem to be uneeded are pushed to the side of the table but 

not discarded.  “An unpopular initial design may turn out to be a popular later design, or 

perhaps the final design is a small alternation of an initially rejected design. [28]” 

Through this process, the engineers ensure that the classes have been well formu-

lated and that they have the necessary behavior-responsibility (via their methods) and 

knowledge-responsibility (via their attributes) to handle a representative set of scenar-

ios.  From the CRC card exercise the high-level/UML class design almost falls out – 

because the classes have been identified as well as the required methods and attributes.  
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Formulating the official Object Model and associated interaction diagram is done as a 

formalization of the CRC card exercise and serves as the high-level design. 

Lastly, cyclic development is encouraged.  It is recommended that once high-level 

design and review are completed, the pair break their project into pieces that appear to 

be between 100 and 300 lines of code.  The pair should then iteratively perform low-

level design, code, review, compile and test for each of these increments.  Future incre-

ments should be built upon the growing code base of past increments. 

3.2.2.2     CSP Level 1.1 

     For over 20 years, numerous studies have documented the benefits of reviews and 

inspections for efficient defect removal (some selected references are [11, 29, 30, 31]).  

At CSP Level 1.1, both design and code reviews are introduced.   During these reviews, 

the pair of programmers examines their own work products.     

       Even with the non-driver performing constant reviews, the pair still needs to step 

back from the computer and review their work against prescribed design and code re-

view checklists.  Realistically, even with collaborative pairs, some work will be done 

individually due to illness, time conflict, or by conscious choice.  (For example many 

pair programmers have found that rote, routine coding is more effectively done alone.)  

Therefore, the CSP has two versions of the design review checklist (Table 37 and Table 

38) and two versions of the code review checklist (Table 35 and Table 36) – one version 

of each for individual work and one version of each for collaborative work.  Work done 

individually must be very carefully checked before being incorporated into the shared 

code base.  Therefore, the checklists for individual work are quite thorough.  However, 
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work performed by both partners does not require as thorough a formal review because 

the non-driver performs a constant review.  Reviews of collaborative work focus on 

overriding factors like “Does the design cover all items in the specification?” or “Did 

we completely implement our design?”   Reviews of individual work also check for syn-

tax and lower-level logic errors. 

     Sample checklists can be found in Appendix B.  Some items in the design review 

checklists were taken from [32].  It must, however, be emphasized that these checklists 

should be considered dynamic for each collaborative pair.  If a pair never makes a par-

ticular mistake, this item should be taken off the checklist.  Other errors the pair is prone 

to making should be added to the checklist.    

Level 1.1 also introduces black box, white box and automated regression testing 

techniques.  Initial black box test cases are written early, in the design stage.  The phi-

losophy behind this is that if you diabolically think about “how can I break this code” 

and write test cases to see if you have or not, you will design and code in order to pass 

your own test cases.  Also, the design phase is a relatively calm, thoughtful phase of de-

velopment, conducive to thinking clearly and thoroughly about test cases.   When a 

project is in the chaotic throes of testing with a deadline looming, the development of a 

complete set of test cases is often compromised.  For each test case, the Test Case Tem-

plate (see Table 39 on page 151 in Appendix B) is completed.  Additional information 

about the black box test cases is added, as more implementation issues are resolved.   

As is done in Extreme Programming, white box unit test cases are incrementally 

written and added to an automated regression test suite prior to writing the actual code.  

Writing unit test cases before coding allows you to verify that you really understand the 
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requirements and can even help clarify implementation issues.  Ron Jeffries, one of the 

Extreme Programming principles discusses Extreme Testing [33]:   

We need to be sure of two things:  the new capability works, and we ha-
ven’t broken anything that used to work.  And that requires testing.  
There are two things to be sure of, so Extreme Testing specifies two key 
actions: 

1. To be sure that new features work, write Unit Tests for every feature. 
 Write them before you release the code, preferably before you even write 
it.  Save all the unit tests for the whole system. 

2. To be sure that nothing else is broken, run all the Unit Tests in the 
entire system before any code is released – and ensure that those tests 
run at 100 percent! 

Let me emphasize that last point.  Whenever Extreme Programmers re-
lease any code at all, every unit test in the entire system must be 
running at 100%!  That shows us not just that the new feature works, 
but that the changes haven’t broken anything anywhere. 

This iterative process of “design-a-little code-a-little test-a-little” allows develop-

ment to proceed with confidence that code is correct.  It also improves defect removal 

efficiency because if a test case fails, the engineer can be assured that the new code 

caused the fault.  “Software release goes much faster when you run the tests before 

every release, because if anything breaks you know almost exactly where the problem is. 

 Developers who work with tests get to spend more time working with new code, and 

less time trying to find obscure bugs in old code [33].” 

Appendix E has a sample design and example for the automated regression tester.  A 

philosophy behind the tester is that it is tedious and error-prone to visually inspect pro-

gram output to see if tests passed.  Testing is then accomplished by formulating tests as 

collections of Boolean expressions and having the test program report a summary of 

passes and failures.   “You can’t have comprehensive repeatable tests if you have to 
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manually check the results.  Have a testing facility to set up and run the tests, check the 

results, and report them [33].” 

Additionally, Table 41 on page 153 in Appendix B has a test coverage script that 

helps with the review of completeness of the both black box and white box test case 

sets. 

The last thing added to the Level 1.1 is measurements, which examine the effective-

ness of the quality initiatives of Level 1.  The measurements mirror the measurements of 

the Personal Software Process [11].  Beginning with Level 0.0, engineers record data on 

the time they spend and the defects they remove.  In this level this data is turned into 

significantly more information in order to provide measurement-based feedback.  This 

information can provide critical feedback so they can effectively critique their own work 

and adjust their pair-process.  Each of the measurements that are introduced in Level 1.1 

is briefly explained: 

Yield:  Yield is the percentage of defects that were in a program during a particular 

phase that were removed during that phase.   A high yield is good; a low yield is poor. 

The yield measurements demonstrate how good a “filter” for removing defects a par-

ticular phase was.  Yield can be measured because in the CSP defect recording log 

engineers record their best guess at the phase the defect was injected and the phase it 

was removed.  Process yield is the percent of total defects that were removed prior to 

the first compile: 
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Equation 1:  Process Yield 

Process Yield = 100 * (defects found before the first compile) 
                                     Total defects found 

 

With practice and experience, an 80% process yield is an excellent goal to strive for 

[11].  

Cost of Quality (COQ):  A measure of the amount of time spent to achieve a quality 

product.  COQ has two components.  One component of COQ is failure costs or the cost 

to diagnose a failure and to make necessary repairs.    

Equation 2:  Failure Cost of Quality 

Failure Cost of Quality = 100 * (compile time + test time) / (total development time) 

 

Another component of COQ is appraisal costs.  Appraisal costs are the costs to 

evaluate a product to determine its quality level and can be calculated: 

Equation 3:  Appraisal Cost of Quality 

Appraisal Cost of Quality = 100 * (design review time + code review time) / (total de-

velopment time).   

 

These two components are summed to get the Total COQ.  The Appraisal to Failure 

Cost ratio (A/FR ratio) is also calculated from these measures. 
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Equation 4:  Appraisal to Failure Ratio (A/FR) 

A/FR = (Appraisal COQ) / (Failure COQ) 

 

The A/FR ratio is a good indication of the “degree to which the process attempts to 

eliminate defects prior to compiling and test phases [11].”   A high A/FR is  associated 

with low test defects.   

Defect Removal Efficiency:  This is a measure of the number of defects that are re-

moved per hour in each defect removal phase.  The measure is used to indicate the 

relative defect removal efficiency of each phase.  It is calculated by dividing the total 

number of defects found during a phase by the amount of time spent in that phase. 

Defect Removal Leverage:  This measure is used to directly compare the relative ef-

fectiveness of the defect removal phases.  It is a ratio of the above Defect Removal 

Efficiency in any two phases.  It is most often the ratio relative to the test phase as an 

indication of how much more efficient a pre-test phase is at removing defects when 

comparing with the test phase.         

It should be noted that these measurements are tedious to calculate.  Tool support to 

calculate these measurements from raw time and defect data is absolutely essential for 

data accuracy and in order for the methodology to be practical.  Various tools have been 

developed and used to perform these calculations.  The SEI provides an Excel spread-

sheet program to track the data and perform the calculations.  The students involved in 

this research used a web-based tool, which stored the data on an NT server.  The stu-

dents could then use the tool in the university laboratories, from their workplace, or 



 

 

31

from home and could effortlessly combine their date with their partners when they chose 

to work separately.  The web-based tool was developed as part of this research.  

3.2.3    CSP Level 2:  Collaborative Project Management 

Level 2 is concerned with adding sound project management activities to the col-

laborative team’s process.  “Project management includes the oversight activities that 

ensure the delivery of a high-quality system on time and within budget [25].”  The pro-

ject management techniques of the PSP are essentially unchanged in the CSP.  They 

easily apply to collaborators as well as individuals.  However, as discussed in Section 

3.3, their position in the evolutionary learning approach has been adjusted.   

3.2.3.1     CSP Level 2.0 

Often product size and resource estimates are developed via guesses and/or gut 

feels.  However, using the methods of Level 2.0, one can systematically answer the 

question software development managers perpetually ask, similar to, “Can you be done 

with this project by the end of March?  The customer wants it by March.”  It raises the 

engineer’s ability to answer this question from a “probably” answer to an answer such 

as “I can tell you with 90% confidence that this project will be between 4,000 and 4,500 

lines of code.  Based on my own personal historical data, this should take me about 100 

hours – so I feel very comfortable with a March commitment.”  In short, the method 

helps engineers make commitments they can meet.   

The first step in formulating the commitment is the development of a high-level 

conceptual design.  “This design establishes a preliminary design approach and names 

the expected product objects and their functions [11].”  The idea is not to spend too 
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much time on the conceptual design – balancing the need to postulate the objects that 

will be needed without devising the high-level design.  It is this conceptual design that 

will be used to determine the resource estimate/commitment required to build the prod-

uct.  Decisions on whether to proceed or not with the product will be based on these 

estimates and commitments.  Further analysis and design activities will then refine this 

design if it is decided that the product will be developed. 

The PROBE method is used to systematically develop a product size (lines of code) 

and resource estimate using sound mathematical methods.  PROBE stands for PROxy-

Based Estimating.  First, the PROBE method recognizes the need to start the estimation 

process with “some proxy that relates product size to the functions the estimator can 

visualize and describe [11].”  For object-oriented design, the objects identified in the 

conceptual design are used as the proxy.  During early, conceptual design, the engineers 

can begin to visualize the objects that will be included in their design.  An estimate of 

the number of lines of code per object estimate is made via projecting the quantity of 

methods each class will likely need and personal historical data on object size.  This is a 

typical engineering estimation method in which the sum of estimates of the components 

is found to be more accurate than a single estimate of the whole.   

Statistical linear regression analysis is then performed on the engineer’s historical 

database of past projects to determine the relationships between past estimates, actual 

size, and actual effort.  These relationships and the estimated object size (discussed 

above) are used to forecast the projected actual size and resource requirements for the 

current project.  Finally, a prediction interval is calculated to give the likely range 
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around the estimate based on the variance in the historical data.  Engineers can choose 

their external commitment from the range of values in the calculated prediction interval. 

A few additional relevant measurements are added to the Project Plan in Level 2.0.  

First, the LOC/Hour measurement for the current program and all programs to date is 

added to the summary section.  Additionally, the Cost-Performance Index (CPI) is 

added to indicate the degree to which cost commitments are being met.  CPI is the ratio 

of the planned time to date divided by the actual time to date for all programs.  A CPI of 

1.0 or greater is desirable.  A CPI less than 1.0 indicates that cost commitments are not 

being met. 

As with the measurements of Level 1.1, automation of the PROBE method and the 

calculation of the additional measurements are essential for making the method practical 

and accessible to busy software engineers. 

3.2.3.2     CSP Level 2.1 

Performing the prescribed activities of Level 2.1 gives engineers an orderly plan for 

performing the required tasks to successfully complete a project and a framework for 

determining and communicating the status of their work.  The engineer implements task 

and schedule planning and tracking via the earned value method.   

A particular task’s earned value is based on the percentage of the total 
planned project effort that the task will take.  As tasks are completed, the 
task’s planned value becomes earned value for the project.  The project’s 
earned value then becomes an indicator of the percentage of completed 
work.  When tracked week by week, the project’s earned value can be 
compared to its planned value to determine status, to estimate rate of 
progress, and to project the completion date for the project. [21] 

For the Task Planning, the engineer enumerates a list of the tasks needed to com-

plete the project.  The engineer then assigns a projection of the amount of time it would 
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take to complete the task (generally a percentage of the total resource estimate devel-

oped in Level 2.0).  Each task is assigned an earned value based on the percentage of 

total time the task is projected to take.  The engineer earned this value by completing the 

task.  The engineer can easily communicate their completion status based on the Task 

Planning results. 

The Schedule Planning is used to determine the status of how much time the have 

spent on the project.  The resource estimate from Level 2.0 is divided into time com-

mitments for each week of the project.  The time entered beginning in Level 0.0 can be 

used to compare the time commitment of the Schedule Planning with actual time dedi-

cated to the project.     

Note:  In the CSP, the PROBE instructions, Size Estimating Template, Task Plan-

ning Template, and Schedule Planning Template are identical to that of the PSP.  

Therefore, these are not included in Appendix B.  For these instructions and templates, 

refer to Appendix C in [11]. 

3.3 Differences Between CSP and PSP 

Obviously the largest difference between PSP and CSP is the incorporation of pair 

programming.  Essentially every script, template, and form has been adjusted to incor-

porate the work of two and to specifically leverage the power of two working together.   

Table 1 below summarizes the differences of the software engineering techniques 

introduced in each level.  Two major differences are noted.  First, the Quality Manage-

ment and Project Management phases are swapped and reordered in the CSP.  This was 

done to place additional focus on quality management early in the process, while accu-



 

 

35

mulating more historical data that can be used for estimation in CSP Level 2.  Addition-

ally, cyclic development is encouraged through levels 1 and 2 in the CSP making the 

equivalent of PSP Level 3 unnecessary.   

There are really two levels of cyclic development involved.  CSP encourages “mi-

cro-iteration” whereby a particular pair of programmers iterates while developing the 

segment of the project assigned to them.  They analyze and develop and review a high-

level design for their piece of the program.  Then, the engineers are encouraged to di-

vide up their design into their own micro-increments and cycle through low-level 

design, code, review, compile, and test for each.  Another level of cyclic development is 

“macro-iteration” whereby a whole development team schedules the development of the 

whole project in large increments.  This macro-iteration is not addressed by the CSP.  It 

would need to be addressed by a larger team process, such as the Team Software Proc-

ess [34].      
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Table 1:  Differences between PSP and CSP Levels 

Level PSP CSP 

0.0 Baseline / Current Process Baseline / Current Process 

0.1 Coding Standard 
Size Measurement 
Process Improvement Proposal 

Coding Standard 
Size Measurement 
Process Improvement Proposal 

1.0 Size Estimating 
Test Reports 

Analysis  (Use Cases) 
CRC Cards 
Design 

1.1 Task Planning 
Schedule Planning 

Code Review 
Design Reviews 
Test Case Development 
Measurements 

2.0 Code Review 
Design Review 
Measurements I 

Size Estimating 
Resource Estimating 

2.1 Design Templates 
Measurements II 

Task Planning 
Schedule Planning 

3.0 Cyclic Development (Removed) 

 

Additionally, more recent Object-Oriented Analysis and Design techniques were in-

corporated into the CSP.  Use Cases, CRC Cards and class design are introduced in 

Level 1.0.  Analysis was addressed in the PSP in the development of an Operational 

Scenario Template in which the system’s operational behavior was described via scenar-

ios.  Use cases are a more recent, thorough, and higher-level version of the Operational 

Scenario Template.  PSP design involved the development of the Functional Specifica-

tion Template, State Specification Template and the Logic Specification Template.  

These all involve formal and semi-formal notation.  While powerful techniques, practic-
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ing programmers generally do not use formal notation, unless mandated by manage-

ment.  These were replaced with higher level UML class diagrams developed with the 

help of CRC card brainstorming.      

Inspired by the automated testing techniques of XP, additional testing focus was in-

corporated into Level 1.1.  Black box test cases are written during the design phase 

using a Test Case Template.  White box and additional black box test cases are written 

prior to actually coding new functions, and these test cases are added to an automated 

regression test suite.  Overall test coverage is checked against a Test Coverage Check-

list. 

“Lesson 1 about data collection is you may have to sacrifice some data accuracy to 

make data collection easier [31].”  Many engineers complain about the amount of data 

they must record as part of PSP.  Several fields were removed from the Defect Re-

cording Log to reduce the tedium of entering defect data.  Additionally, engineers are 

not asked to estimate defects prior to code development.  Several of the forms were 

simplified.     



 

 

CHAPTER 4  

QUALITATIVE RESULTS 

A formal experiment was run at the University of Utah to validate the effectiveness 

of the Collaborative Software Process.  In the summer of 1999, a web programming 

class was taught to 20 undergraduates.  The students formed ten pairs and worked col-

laboratively using the CSP for all assignments.  The purpose of the class was to pilot the 

CSP before running a formal experiment.   

The official experiment was run in the fall of 1999.  The class consisted of 41 jun-

iors and seniors.  (It is important to note that by the time these students participated in 

this class and this experiment, they had significant programming experience in the form 

of internships and large class projects – such as writing compilers, portions of operating 

systems, and interpreters.)  They learned both the PSP and the CSP and coded in C++, a 

language they had used for between two and three years.  One third of the class worked 

individually while the rest worked in collaborative pairs. The individuals used the PSP; 

the pairs used the CSP.  Both groups were asked to write the same programs so their 

results could be directly compared.  The students completed six assignments over a pe-

riod of seven weeks.   The first and last assignments were pre-test and post-test elements 

of the formal experiment in order to study the performance of an individual programmer 

versus the performance of the same individual as a collaborative programmer.  The ex-

perimental design and more details about these classes can be found in Appendix A. 
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The qualitative results discussed in this chapter were obtained through observation, 

personal experiences, discussions, and from written information obtained from the stu-

dents involved in the experiment outlined in Appendix A and from professional pair 

programmers.  The results center on explaining why collaborative programming is bene-

ficial (beyond the economic advantages, which will be discussed in Chapter 5) and on 

sharing success factors for effective collaboration.  (Much of this information was re-

ported in [35-37].) 

4.1 Why Collaborative Programming is Beneficial 

4.1.1    Pair-Pressure 

Pair programmers put a positive form of “pair-pressure” on each other.  The 

programmers admit to working harder and smarter on programs because they do not 

want to let their partner down.  Also, when they meet with their partner they both work 

very intensively because they are highly motivated to complete the task at hand during 

the session.  “Two people working together in a pair treat their shared time as more 

valuable. They tend to cut phone calls short; they don't check e-mail messages or 

favorite Web pages; they don't waste each others time. [6]“  (Contrast that with the pro-

ductivity and quality expected from one student who admitted, “When I work on 

assignments individually, I can watch TV while I work.”)  Summarized by a pair pro-

grammer, “It takes more effort because the pace is forced by the other person all the 

time; neither person feels they can slack off.”  As each keeps his or her partner focused 

and on-task, tremendous productivity gains and quality improvements are realized.    
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As reported in [36], a class was taught at the University of Utah in which all stu-

dents programmed collaboratively.  These students consistently turned in their 

assignments on time; each of the ten collaborative groups turned in eight projects and all 

80 were on time.  Additionally, all projects were of very high quality.  The average 

grade on all 80 assignments was 98%.  (A teaching assistant, who had no interest in the 

research results, did all the project grading.) 

This same group of students did not perform so flawlessly on their individual work.  

The students had one in-class midterm exam, one take-home final exam, and one paper 

evaluating the collaborative process.  The average on these items was 78.1% with a 

standard deviation of 20.91.  Again, the average on the collaborative aspects of the class 

was 97.9% with a standard deviation of 6.74.  The students performed much more con-

sistently and with higher quality in pairs than they did individually – even the less 

motivated students performed well on the programming projects.  Through the students’ 

weekly journal entries, the students communicated that this performance was not due to 

one person carrying the load of two – except on one of the 80 assignments.  In an anony-

mous survey on the last day of class, the students were queried about the reasons for the 

performance differences of the projects vs. the exams.  Overwhelmingly, the students 

responded, “It was the pair-pressure – I could not let my partner down.” 

Another benefit of pair pressure is improved adherence to procedures and standards. 

 Each partner is expecting the other to follow the prescribed development practices.  

“With your partner watching, though, chances are that even if you feel like blowing off 

one of these practices, your partner won’t . . . the chances of ignoring your commitment 
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to the rest of the team is much smaller in pairs then it is when you are working alone 

[5]” 

4.1.2    Pair-Think 

As reported in Chapter 2, Nick Flor, a Cognitive Science MS student, studied a pair 

of collaborative programmers.  Flor recorded via video and audiotape their exchanges 

and progress on their task.  A subset of these exchanges is discussed in [17] in order to 

correlate specific behaviors with known distributed cognition theories.  One of these 

theories is “Searching Through Larger Spaces of Alternatives” demonstrates pair-think. 

  

A system with multiple actors possesses greater potential for the genera-
tion of more diverse plans for at least three reasons:  (1) the actors bring 
different prior experiences to the task; (2) they may have different access 
to task relevant information; (3) they stand in different relationships to 
the problem by virtue of their functional roles. . . An important conse-
quence of the attempt to share goals and plans is that when they are in 
conflict, the programmers must overtly negotiate a shared course of ac-
tion.  In doing so, they explore a larger number of alternatives than a 
single programmer alone might do.  This reduces the chances of select-
ing a bad plan. [17] 
 

A student pair-programmer confirms Flor’s findings, “We often came up with dif-

ferent ideas about how the design should go and the result of arguing over which one 

was better often led to a truly superior hybrid design.” 

Flor also reports,  

Because of the nature of ill-structured tasks, there is often insufficient in-
formation for selecting the right plan.  Thus there is the potential for an 
incorrect or less efficient course of action to be adopted.  Fortunately, 
refuted plans do not disappear.  The process of negotiating plans dis-
tributes them between the actors.  If at a later time, it is discovered that 
the current course of action is wrong, that plan may later be independ-
ently adopted by an actor who is not necessarily its originator. [17] 
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4.1.3    Pair-Relaying 

Literature on collaboration overflows with examples of remarkable achievements in 

many fields that could have only occurred with collaboration.  One author contends we 

are living in a world in which technological complexity “increases at an accelerating 

rate [which] offers fewer and fewer arenas in which individual action suffices. [38].” 

Software has become the driving force behind most new technologies. But the engineer-

ing of software is becoming increasingly complicated. A software engineer must 

balance a variety of competing factors, including functionality, quality, performance, 

safety, usability, time to market, and cost. Moreover, the size of software systems that 

are being built is rapidly growing.  

Related to pair-think, collaborative teams consistently report that together they can 

evolve solutions to unruly or seemingly impossible problems.  "Problem solving" refers 

to when the two programmers are puzzled as to why something doesn't work as ex-

pected, or simply can't figure out how to go forward.  Pair relaying is a name for the 

effect of having two people working to resolve a problem together in the exact manner 

Wagstaff describes below. 

There were times we felt that we would have given up except that we 
“tag teamed.”  I’d be on the ropes and I’d describe the problem in such 
a way that he had a valuable insight.  Then he’d fight on as long as he 
could and stop . . . then I’d have an insight . . . and so on.  I suppose oth-
ers would call it brainstorming, but it feels different to me. 

                                             [-David Wagstaff, software engineer, Salt Lake City] 

Practitioners describe contributing their knowledge to the best of their abilities, in 

turn. They share their knowledge and energy (and also brainstorming) in turn, chipping 

steadily away at the problem, evolving a solution to the problem. 
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Additionally, pairs report that in their problem solving, they do not spend as much 

time lost in a particular problem or fix. 

One student noted: 

One problem with single programming is that you can forget what you 
are doing and easily get wrapped in a few lines of code, losing the big 
picture.  Your partner is able to constantly review what you do, making 
sure that it is in line with the product design.  He/she can also make sure 
that you are not making the problem too difficult.  Many times, these two 
items alone can waste a lot of time.    
 

Combining pair-think and pair-relaying is powerful.  One student wrote, "I have 

found that, after working with a partner, if I go back to working alone, it is like part of 

my mind is gone.  I find myself getting confused about things.” 

4.1.4    Pair-Reviews 

Inspections were introduced more than twenty years ago as a cost-effective means of 

detecting and removing defects from software.  Results [29] from empirical studies con-

sistently profess the effectiveness of reviews.  Even still, most programmers do not find 

inspections enjoyable or satisfying.  As a result, inspections are often not done if not 

mandated, and many inspections are held with unprepared inspectors.    

Despite a consistent stream of positive findings over 20 years, industry 
adoption of inspection appears to remain quite low, although no definite 
data exists.  For example, an informal USENET survey we conducted 
found that 80% of 90 respondents practiced inspection irregularly or not 
at all [39]. 
 

The theory on why inspections are effective is based on the prominent knowledge 

that the earlier a defect is found in a product, the cheaper it is to fix the defect.  Many 

sources, including [40] state that it is ten times more expensive to remove a defect for 

each additional process step.   
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Intuitively, it is easy to understand why this exponential cost increase occurs.  In a 

review, the programmer looks directly at the problem that was just identified and con-

siders alternatives and fixes.  Once the product enters test or is delivered to customer(s), 

the programmer or field maintenance team must work to translate the symptom (e.g. the 

answer is wrong or the program crashed) back to the problem (which exact line(s) of 

code caused the symptom).  It is easy to see why the translation of the symptom back to 

the problem would cost exponentially more than direct problem identification.   

With pair programming, this problem identification occurs on a minute-by-minute 

basis.  “The human eye has an almost infinite capacity for not seeing what it does not 

want to see . . . Programmers, if left to their own devices, will ignore the most glaring 

errors in their output – errors that anyone else can see in an instant [41].”  With pair-

programming,  “four eyeballs are better than two,” and a momentous number of defects 

are prevented, removed right from the start. These continual reviews outperform tradi-

tional, formal reviews in their defect removal speed.  Additionally, they also eliminate 

the programmer’s distaste for reviews so that effective reviews are actually performed.  

  

4.1.5    Debugging by Explaining  

Every person has experienced in some context that some problems can be resolved 

by explaining them to another.   

. . . effective technique is to explain your code to someone else.  This will 
often cause you to explain the bug to yourself.  Sometimes it takes no 
more than a few sentences, followed by an embarassed "Never mind; I 
see what's wrong.  Sorry to bother you."  This works remarkably well; 
you can even use non-programmers as listeners.  One university com-
puter center kept a teddy bear near the help desk.  Students with 
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mysterious bugs were required to explain them to the teddy bear before 
they could speak to a human counselor. [42] 
 

Students at the University of Utah, similarly, noted how surprised they were that it 

helped them to understand things when they had to explain it to another.  As one student 

said,  

When I explained an idea to my partner, I concentrated on what I was 
saying, and carefully made things clear and logical because I did not 
want to confuse my partner and I wanted him to understand what I was 
talking about.  It helped me better understand the problem I was ad-
dressing.  It also helped me discover some mistakes I had made but did 
not notice before I talked with my partner. 

4.1.6    Pair-Learning 

The continuous reviews of collaborative programming create a unique educational 

capability, whereby the pairs are endlessly learning from each other.  “The process of 

analyzing and critiquing software artifacts produced by others is a potent method for 

learning about languages, application domains, and so forth [39].”  Earlier, it was stated 

that the continuous reviews of collaborative programming were more effective than tra-

ditional review because of their optimum defect removal efficiency.  To further this, the 

learning that transcends in these continual reviews prevents future defects from ever oc-

curring – and defect prevention is more efficient than any form of defect removal.  Says 

Capers Jones, chairman of Software Productivity Research, 

It is an interesting fact that formal design and code inspections, which 
are currently the most effective defect removal technique, also have a 
major role in defect prevention.  Programmers and designers who par-
ticipate in reviews and inspections tend to avoid making the mistakes 
which were noted during the inspection sessions. [43]   

 
Phillip M. Johnson, a professor at the University of Hawaii, refutes traditional 

inspections heuristic “Raise issues, don’t resolve them.”  He speaks, instead, in favor of 
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the educational opportunity that abounds in code inspections.  “A strong argument can 

be made that overall software quality is affected far more profoundly by improvements 

to developer skills, which reduces future defect creation, than by simply removing de-

fects from current individual documents [39].”  The continuous reviews of collaborative 

programming, in which both partners ceaselessly work to identify and resolve problems, 

affords both optimum defect removal efficiency and the development of defect preven-

tion skills. 

4.1.6.1     Pair-Learning in the Classroom 

     Larry Constantine, whose observation of P. J. Plaugher’s software company were 

reported in Chapter 2, noted that “. . . for language learning, there seems to be an opti-

mum number of students per terminal.  It’s not one . . . one student working alone 

generally learns the language significantly more slowly than when paired up with a part-

ner [19].”  A class taught during Summer Semester at the University of Utah set out to 

study pair programming in an educational setting in which programming language learn-

ing takes place.  (Details on this class can be found in Appendix A.)  The results of the 

class, in which collaborative programming proved beneficial to both students and teach-

ing staff, will be discussed.     

     Despite the fact that some students get better grades than others, classrooms are 

unique in that skill level and experience between students are relatively equivalent when 

compared with differences found in industry.   As a result, the students have a mutual 

learning relationship rather than a novice-expert relationship.  This relationship proved 

fruitful for the students.  The students learned several web programming languages dur-
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ing the (shorter) summer semester.  However, the students were able to easily tackle all 

programming projects, which was very satisfying for them.  When one partner did not 

know/understand something, the other almost always did and could provide immediate 

assistance.   In a survey at the end of the semester, 74% of the students noted, “Between 

my partner and I, we could figure everything out.”   

     They also found it a very efficient working arrangement.  When they found them-

selves needing to use new or unfamiliar semantics or syntax, the non-driver has the job 

of flipping through resource materials.  During this time, the driver might make progress 

on a more familiar area of the code.  Together, defect removal was also much more effi-

cient, which significantly reduced the frustration level of debugging they had been 

accustomed to.  Most significantly, 84% of the class agreed with the statement “I 

learned faster and better because I was always working with a partner.”    

Collaboration also makes the instructor feel more positive about the class.  Their 

students are happier, and the assignments are handed in on-time and are of higher qual-

ity.  There is one additional very positive effect for the teaching staff -- less questions!  

When one partner did not know/understand something, the other almost always did.  

Between the two of them, they could tackle anything, which made them much less reli-

ant on the teaching staff.  Email questions were almost non-existent.  Lab consultation 

hours were very calm, even the day the projects were due.   

Naturally, though, pair programming requires the teaching staff to deal with obvious 

workload imbalances between the partners that they would not have to deal with if each 

worked individually.  Normal two-person team projects are divided into “my” part and 

“your” part.  However, with collaborative programming, the entire project is “ours.”  
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Because of this, there was much more of a “collective code ownership” feeling and far 

less partner problems than have been observed in other classes in which students 

worked in traditional two-person teams. 

(Note:  much of the information contained in this Pair-Learning in the Classroom 

section had been previously reported in [36].) 

4.1.6.2     Pair-Learning in the Workplace 

In the workplace, skills levels are more variable than in a classroom.  The majority 

of this section will address the knowledge transferability experienced with collaborative 

programming.  This is not to say that the expert does not benefit from the arrangement, 

even when paired with a novice.  Consider this experience of a senior programmer:   

I was sitting with one of the least-experienced developers, working on 
some fairly straightforward task. Frankly, I was thinking to myself that 
with my great skill in Smalltalk, I would soon be teaching this young 
programmer how it’s really done. 
 
We hadn’t been programming more than a few minutes when the young-
ster asked me why I was doing what I was doing. Sure enough, I was off 
on a bad track. I went another way. Then the whippersnapper reminded 
me of the correct method name for whatever I was mistyping at the time. 
Pretty soon, he was suggesting what I should do next, meanwhile calling 
out my every formatting error and syntax mistake. 
 
I’m not entirely stupid. I noticed very quickly that this most junior of 
programmers was actually helping me! Me! Can you believe it? Me! 
That has been my experience every time thereafter, in pair-
programming. Having a partner makes me a better programmer. 

 [-Ron Jeffries, from [35]] 
 

Learning happens in a very tight apprenticeship mode.  From moment to moment, 

the partners can take turns being the teacher and the taught, the novice and the expert.  

Even unspoken skills and habits cross partners.  [44] discusses apprenticeship case stud-



 

 

49

ies.  These studies range from tailors to flag signalmen in the U.S. Navy to butchers in 

modern supermarkets. 

The book points out the importance of the novice working in "line of sight" of the 

expert.  Expertise is transmitted, in part, through the ongoing visual (and auditory) field. 

 They describe successful apprenticeship learning in both tailors and Navy signalmen 

where “line of sight” is available. The beginner explicitly picks up skills from hearing 

and/or seeing the expert.   

Apprentice butchers, however, do not have line of sight access to their local expert.  

The beginners are given simple cuts to perform, but do not have a way to learn how to 

do more difficult cuts, which were being done by the senior butcher in another room.  

The authors present this as a situation in which apprenticeship learning does not effec-

tively happen. 

Most project programming environments match the butcher situation, not the tailor 

or signalmen situation.  The novice programmer generally sits in their workspace work-

ing on simple code; the expert sits in their own workspace creating complex code and 

making architectural decisions.  Pair programming is a far superior apprenticeship 

model (though it has already been stated that the expert, too, learns from the novice.) 

In industry, pairs are not usually assigned to each other on a long-term basis.  Often, 

pairs change day-by-day, giving additional opportunity for learning.  [45] contains a sec-

tion called “I heard it through the Pairvine” which discusses this phenomenon – when 

one person learns a new trick with a tool, or a new innovation or snafu, it tends to 

spread through the whole group within a couple of days with no deliberate effort. 
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When an important new bit of information is learned by someone on the 
team, it is like putting a drop of dye in the water.  Because of the pairs 
switching around all the time, the information rapidly diffuses through-
out the team just as the dye spreads throughout the pool.  Unlike the dye, 
however, the information becomes richer and more intense as it spreads 
and is enriched by the experience and insight of everyone on the team.  
[5] 

4.1.7    Team Building 

Programming teams in industry in which pair programming was practices report sig-

nificantly improved teamwork among the members.  If the pair can work together, then 

they learn ways to communicate more easily and they communicate more often.  In 

many cases, these industrial teams continually rotate partners; two people do not work 

together for more than a short increment.   This increases the overall information flow 

and team jelling farther. 

Anecdotally, pair-programming also tends to improve the team’s hustle, as described 

in [46]: 

A baseball manager recognizes a nonphysical talent, hustle, as an essen-
tial gift of great players and great teams.  It is the characteristic of 
running faster than necessary, moving sooner than necessary, trying 
harder than necessary.  It is essential for great programming teams too.  
Hustle provides the cushion, the reserve capacity, that enables a team to 
cope with routine mishaps, to anticipate and forefend minor calamities.  

4.1.8    Project Risk 

With pair programming, the risk from losing key programmers is reduced, because 

there are multiple people familiar with each part of the system.  If a pair works together 

consistently, then there are two familiar with this particular area of the program.  If the 

pairs rotate, as discussed above, many people can be familiar with each part.  A com-

mon informal metric (invented by Jim Coplien of AT&T Bell Labs) is referred to as the 
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"truck number."  "How many or few people would have to be hit by a truck (or quit) be-

fore the project is incapacitated?" The worst answer is "one." Having knowledge 

dispersed across the team increases the truck number, and project safety. 

4.1.9    Maslow’s Needs Hierarchy 

In the early 1950’s Abraham Harold Maslow postulated that people will work to sat-

isfy their own needs, but in a hierarchical order of importance.  Each lower level must 

be satisfied at least partially before the person will be motivated to satisfy a higher-level 

need [47].  Maslow’s hierarchy underlies many management approaches to quality mo-

tivation [10].  The hierarchy is defined below in Figure 3. 

Figure 3:  Maslow’s Hierarchy of Needs 
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     Contrast individual and collaborative programming and Maslow’s assertion that peo-

ple will work to satisfy their own needs, but in a hierarchical order of importance.  If 

both provide stable employment, they equally satisfy the basic human Physiological, 

Safety and Security needs at the lowest two levels.  However, the social interaction of 

collaborative programming is attractive to engineers because it better serves the next 

two higher levels of basic human needs.  The Belonging and Love needs causes people 

to “hunger for relations with people in general – for a place in the group or the family 

[47].”  Additionally, essentially all engineers earn the respect of their partners.  Indeed, 

it has been demonstrated that even novice programmers are able to help expert pro-

grammers, giving the thrill of contribution and confidence.  This respect helps satisfy 

the Esteem need, which professes the “need or desire . . . for the esteem of others.  The 

most stable and therefore most healthy self-esteem is based on deserved respect from 

others [47].”  Only when the lower four levels are satisfied to a great degree is the fifth 

and highest level, Self-Actualization, more satisfying.  This highest level is the desire 

for an “individual to do what he or she, individually, is fitted for.  Musicians must make 

music, artists must paint . . .”  

Matthias Felleisen of Rice University refers to solo programmers as “lonely macho 

warriors battling against a sea of bits and bytes.”   This description reflects that solo pro-

gramming may satisfy an engineers self-actualization needs, but neglect their more basic 

needs for belonging and the respect of their partner and teammate. 

(Note:  much of the information contained in the Pair-Learning in the Workplace, 

Team Building, and Project Risk sections had been previously reported in [Cockburn, 

submitted for consideration #58].) 
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4.2 Success Factors for Effective Collaboration 

Most programmers are long conditioned to working alone and often initially resist 

the transition to pair programming.  Ultimately, most make this transition with great 

success.  This purpose of this section is to document proven strategies for aiding pro-

grammers in becoming effective pair programmers.   (Much of the information in this 

section has previously been reported in [48].) 

4.2.1    Pair-Jelling 

    The pair must cease considering themselves as a two-programmer team and must 

start considering themselves as one coherent, intelligent organism working with one 

mind.     Tom DeMarco shares his inspiring view on this type of union.  

A jelled team is a group of people so strongly knit that the whole is 
greater than the sum of the parts.  The production of such a team is 
greater than that of the same people working in unjelled form.  Just as 
important, the enjoyment that people derive from their work is greater 
than what you'd expect given the nature of the work itself.  In some 
cases, jelled teams working on assignments that others would declare 
downright dull have a simply marvelous time. … Once a team begins to 
jell, the probability of success goes up dramatically.  The team can be-
come almost unstoppable, a juggernaut for success [49].   

4.2.2    Project Ownership 

In pair programming, two programmers are assigned to jointly produce one artifact 

(design, algorithm, code, etc.).  The two programmers are jointly responsible for every 

aspect of this artifact.  One person is typing or writing, the other is continually review-

ing the work.  But, both are equal participants in the process.  Both partners own 

everything.   
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With pair programming, the two programmers become one.  There should be no 

competition between the two; both must work for a singular purpose, as if the artifact 

was produced by a singular good mind.  Blame for problems or defects should never be 

placed on either partner.  The pair needs to trust each other’s judgment and each other’s 

loyalty to the team. 

4.2.3    Mutual and Self-Respect 

 Pair programmers indicate that it is very difficult to work with someone who has a 

great insecurity or anxiety about their programming skills.   They tend to be defensive or 

do not contribute to the team.  Programmers with such insecurity should view pair pro-

gramming as a means to improve their skill by constantly watching and obtaining 

feedback from another.   

Also, negative thoughts such as “I’m an awesome programmer, and I’m paired up 

with a total loser” should also be rejected, lest the collaborative relationship be de-

stroyed.  None of us, no matter how skilled, is infallible and above the input of another. 

John von Neumann, the great mathematician and creator of the von Neumann computer 

architecture, recognized his own inadequacies and continuously asked others to review 

his work. “And indeed, there can be no doubt of von Neumann's genius.  His very abil-

ity to realize his human limitation put him head and shoulders above the average 

programmer today . . . Average people can be trained to accept their humanity -- their 

inability to function like a machine -- and to value it and work with others so as to keep 

it under the kind of control needed if programming is to be successful [41].”  
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4.2.4    Ego-Less Programming 

“Ego-less programming,” an idea surfaced by Gerald Weinberg in The Psychology 

of Computer Programming [41] a quarter of a century ago, is essential for effective pair 

programming.  According to the pair programming survey (see Appendix D), excess ego 

can manifest itself in two ways, both damaging the collaborative relationship.  First, 

having a “my way or the highway” attitude can prevent the programmer from consider-

ing others ideas.  Secondly, excess ego can cause a programmer to be defensive when 

receiving criticism or to view this criticism as mistrust.   

In The Psychology of Computer Programming [41], a true scenario about a pro-

grammer seeking review of the code he produced is discussed.  On this particular “bad 

programming” day, this individual ego-lessly laughed because his reviewer found 

seventeen bugs in thirteen statements.  However, after fixing these defects, this code 

performed flawlessly during test and in production.  How different this outcome might 

have been had this programmer been too proud to accept the input of others or had 

viewed this input as an indication of his inadequacies.  Having another to continuously 

and objectively review design and coding is a very beneficial aspect of pair program-

ming.  “The human eye has an almost infinite capacity for not seeing what it does not 

want to see . . . Programmers, if left to their own devices, will ignore the most glaring 

errors in their output -- errors that anyone else can see in an instant [41]."  

Conversely, a person who always agrees with their partner lest he or she create ten-

sion also minimizes the benefits of collaborative work.  For favorable idea exchange, 

there should be some healthy disagreement/debate.  Notably, there is a fine balance be-

tween displaying too much and too little ego.  Effective pair programmers hone this 
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balance during an initial adjustment period.  Ward Cunningham, one of the XP founders 

and experienced pair-programmer, reports that this initial adjustment period can take 

hours or days, depending on the individuals, nature of work and their past experience 

with pair-programming.      

4.2.5    Workspace Layout 

In the pair programming survey (see Appendix D), 96% of the programmers agreed 

that appropriate workspace layout was critical to their success.  The programmers must 

be able to sit side-by-side and program, simultaneously viewing the computer screen 

and sharing the keyboard and mouse. In 
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Figure 4 below (from [50]), layouts to the right are preferable to layouts on the left.   

Effective communication, both within a collaborative pair and within and between col-

laborative pairs, is paramount.  Without much effort, programmers need to see each 

other, ask each other questions and make decisions on things such as integration issues, 

lest these questions/issues are not discussed adequately.  Programmers also benefit from 

“accidentally” overhearing other conversations to which they can have vital contribu-

tions.  Separate offices and cubicles can inhibit this necessary exchange.   "If any one 

thing proves that psychological research has been ignored by working managers, it's the 

continuing use of half partitions to divide workspace into cubicles. … Like many kings, 

some managers use divide-and-conquer tactics to rule their subjects, but programmers 

need contact with other programmers. [41]” 
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Figure 4:  Workspace Layout 

 

 

 

 

 

4.2.6    Taking Breaks 

Because pair programmers do keep each other continuously focused and on-task, it can 

be very intense and mentally exhausting.  Periodically, taking a break is important for 

maintaining the stamina for another round of productive pair programming.  During the 

break, it is best to disconnect from the task at hand and approach it with freshness when 

restarting.    
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CHAPTER 5  

QUANTITATIVE RESULTS 

This chapter will explore the economics of collaborative programming based on the 

observations and measurements of the students involved in the experiment at the Uni-

versity of Utah outlined in the previous chapter and in Appendix A.  Specifically, 

comparisons were made between individuals using the PSP and collaborators using the 

CSP because it has been shown [12, 21] that PSP is a significant improvement over the 

ad hoc development prevalent in industry.  Transitively, it follows that, if CSP is an im-

provement to PSP, it is an even greater improvement to ad hoc development practices. 

Differences between the individual (control) group and the collaborative (experi-

mental) group were examined for statistical significance using the independent-samples 

t test.  This test is used to examine if the mean of a single-variable for subjects in one 

group differs from that in another group.  An independent samples test can be used be-

cause the students were placed in identical situations.  The only difference between the 

groups was the variable under study, collaborative work vs. individual work.   

In the independent-samples t test, a “p-value” indicates the probability of the differ-

ence result being caused by chance.  Differences, which had a p-value of less than .05, 

were deemed statistically significant, indicating that there would be less than a 5% 

chance the difference would be caused by chance.     
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The chapter will discuss the effect of collaborative programming on the satisfaction 

of the programmers. Lastly, some additional, secondary quantitative measurements will 

be discussed.   

5.1 An Economic Evaluation of the Collaborative Software 

Process 

. . . economics is primarily a science of choices, and software economics 
should provide methods and models for analyzing the choices that soft-
ware projects must make. [51] 

The affordability of pair programming is a key issue. If it is more expensive, manag-

ers simply will not permit it. “From a business standpoint, profit is not only an 

organization's goal, it is necessary for its survival.  The ultimate aim of engineering is to 

create the most income from the least expense, thus maximizing profit. [52].”  

Skeptics assume that incorporating pair programming will double code development 

expenses and critical manpower needs.  Along with code development costs, however, 

other expenses, such as quality assurance and field support costs must also be consid-

ered. IBM reported spending about $250 million repairing and reinstalling fixes to 

30,000 customer-reported problems [11].  That is over  $8,000 for each defect!   

In this section, first some basic measurements and observations of the students in the 

experiment will be reported.  Delving into emerging research in Software Engineering 

Economics, an affordability model for pair programming will be developed using these 

observed measurements.  “Practitioners are most concerned about understanding what 

aspects of software engineering innovations have worked best and whether they are ap-

plicable to their particular situation [53].”    
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5.1.1    Pair-Quality 

We have learned to live in a world of mistakes and defective products as 
if they were necessary to life.  It is time we adapt a new philosophy in 
America.                                                                  [W. Edwards Deming] 
 

Product quality is a very important metric.  The collaborative pairs and the individ-

ual students in the University of Utah experiment completed four programs to the same 

specifications.  The results were compared.  The bar chart in Figure 5 below shows the 

percentage of the instructor’s test cases passed, on average, by the two groups.  On aver-

age, the collaborators’ code had about 15% fewer defects than the individuals’ code.  

These results are statistically significant at p < 0.05 in all cases except the first program. 

Figure 5:  Post Development Test Cases Passed 
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Figure 6 displays a boxplot of the percentage of post development test cases passed 

for programs 2 through 4.   It demonstrates graphically why the quality differences are 

statistically significant.  The horizontal line at the center of each box marks the median 

(the middle observation when the data values are ordered from smallest to largest) of 

each sample.  The edges of the box mark the 25th and 75th percentiles.  The “whiskers,” 

or the vertical lines that extend from the box show the range of values that fall within 

1.5 box lengths of the median.  The open circle (o) under the individual box indicates an 

extreme value that is more than 3 box lengths from the median.  The number under each 

box is the sample size. 

Figure 6:  Pair-Quality Boxplot 
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The boxplot in Figure 6 shows several desirable qualities for the quality of collabo-

rative pairs.  First, the median value is clearly higher than the median for individuals.  In 

fact, the lower edge of the collaborator box which marks the 25th   percentile is above 

the individual’s median – so over 75% of the collaborators achieved scores higher than 

the individuals.  Additionally, the range of values for the collaborators is significantly 

smaller, indicating greater consistency of high quality, as would be expected by the ef-

fects of pair-pressure. 

5.1.2    Pair-Time 

Many people’s gut reaction is to reject the idea of pair-programming because they 

assume that there will be a 100% programmer-hour increase by putting two program-

mers on a job that one can do.  After the initial adjustment period the total programmer 

hours spent on each assignment trended downward dramatically as shown below in 

Figure 7.  Together the pairs only spent about 15% more time on the program than the 

individuals.  Additionally, after the first program, the difference between the times for 

individuals and for the pairs was no longer statistically significant.  (As discussed, sta-

tistical significance is obtained if p < .05.  For the difference in time values, p = .380, 

which indicates that there is almost a 40% chance the difference in time values would be 

observed by chance.)    
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Figure 7:  Elapsed Time 
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(One important note:  Programmer time for program 4 was not included in this 

analysis. For this particular program, the students reported time measurements with sig-

nificant variability.  Therefore, the instructor distributed an anonymous survey to obtain 

feedback on this variability from the students.  The students reported that it was mid-

term week and many of them had a large Operating Systems project due during that 

week.  Many of them said that they recorded their time and defect data for this program 

significantly less accurately than they had in the past.  Therefore, these self-reported 

measurements were eliminated from the study.  The students’ quality level for this par-

ticular program was included in section 5.1.1 because quality was not a self-recorded 

measurement.) 

Figure 8 below shows the box plot of the time values for programs 2 and 3, after the 

pair-jelling has occurred.  It is easy to see why the time differences are no longer statis-

tically significant.  The median values are essentially equal.  The range of values for the 
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collaborators is larger than for the individuals, which drives the 15% increase in the 

mean value for the collaborators.   

These findings that resource requirements do not double with collaborative pro-

gramming agree with the anecdotes of professional pair-programmers.  Professionals 

who have paired for a year or more consistently describe pair-programming as “more 

than twice as fast,” implying that increased productivity gains might be realized with 

more experience.  The economic analysis below will assume that pairing requires a 15% 

development time investment.  This assumption, however, is clearly conservative con-

sidering the input of long-time pair programmers.  

Figure 8:  Pair-Time Boxplot   
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5.1.3    Net Present Value Analysis 

“Software quality is an investment that should provide a financial return relative to 

the initial and ongoing expenditures in the software quality improvement initiatives 

[54].”   [52, 54-56] profess the use of the economic net present value (NPV) to evaluate 

the return on software quality initiatives.  NPV is the most widely accepted criterion for 

project evaluation in corporate finance [57].  A project with positive NPV increases the 

wealth of the firm.  A high NPV is more preferable to a low NPV; a negative NPV indi-

cates an unacceptable investment.      

NPV is measured in today’s dollars.  The time value of money is accounted for by 

discounting all future cash flows back to the present time under the assumption that a 

dollar today is worth (1 + d)T dollars at time T in the future (or a dollar at time T is 

worth 1/(1 + d)T today).  The positive quantity d is referred to as the discount rate, which 

captures the opportunity cost (e.g. the minimum acceptable return for an investment that 

the company requires for similar projects) of the underlying investment [58].   

A net present value model will first be explained.  Then, the model will be used to 

evaluate the economic advantage of the CSP. 

5.1.3.1     General Net Present Value Model 

In one economic model [56], Erdogmus considers five determinants to compare the 

net present value of alternative software development strategies.  Consider the timeline 

and these determinants explained in Figure 9. 
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The present value of the project is calculated by discounting the net asset value back 

to time zero (from time T) using a discount rate of d and subtracting the cost of devel-

opment from the result.   

    This standard, recognized model will be slightly altered for the analysis of the af-

fordability of CSP based on the personal suggestion of Hakan Erdogmus of the National 

Research Council of Canada.  In order to avoid the choice of an arbitrary Asset Value 

(C) to represent projected revenues, a Present Value of Costs (PVC) model will be used 

instead.  The calculation of PVC is similar to that of NPV, except that Asset Value (C) 

is not considered.  PVC is then calculated M/(1+d)T + I.  The alternative with the lower 

PVC is superior.    
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F ure 9:  Net P e      
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be considered the base strategy.  The process of developing the application via the col-

laborative pair will be considered the test strategy.     

General Assumptions: 

1. An average productivity rate of 25 LOC/hour will be used for the analysis.  

This was the average productivity rate of 196 engineers who took PSP train-

ing [21].  

2. The US average defect/KLOC rate is 39 defect/KLOC.  This statistic was ob-

tained from Capers Jones [43].  The data comes from companies such as 

AT&T, Hewlett Packard, IBM, Microsoft, Motorola, Raytheon, and similar 

companies with formal defect tracking and measurement capabilities.   

3. In the US, on average 85% of defects are removed via the development proc-

ess.  15% of all defects escape to the customer.  This statistic was also 

obtained from Capers Jones [43].  (Together assumptions 2 and 3 indicate 

that there would be 5.85 defects/KLOC remaining in code.  This is consis-

tent, though on the low side, with statistics from the Pentagon and the SEI 

which state that typical software applications contain 5-15 defects per KLOC 

[59].) 

4. Collaborative pairs spend 15% more time overall than individuals (see sec-

tion 5.1.2    ).  However, since this work is done in tandem, the collaborators 

spend 57.5% of the elapsed, “wall clock” time that individuals do. 

5. Code produced by collaborative pairs has a 15% lower defect density than 

code produced by individuals (see section 5.1.1    ). 
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6. When software is delivered to customers or users, bugs and defects start be-

ing reported back to the development organization.  However, the discovery 

of bugs by users is not instantaneous.  Table 2 below enumerates the US av-

erage three year discovery rate of initial software defects after release found 

in [43]: 

7. [30] reported statistics from large Bell Northern Research software projects 

(over 2.5 million lines of code) that show that each defect in software re-

leased to customers and subsequently reported as a problem requires an 

average of 4.5 man-days to repair or an average of 33 hours of subsequent 

maintenance effort, assuming a 7.5 hour workday.  This is consistent with 

data reported in [11].  Therefore, 33 hours/field defect will be used in the 

analysis. 

8. A reasonable annual discount rate of 10% is used for both the base and test 

strategy.  This equates to 0.80% per month. 

9. Software engineers that develop new code cost $50/hour.  Field support 

software engineers cost $40/hour.  (This includes salary + benefits.)   

In Table 3, the Present Value of Costs is calculated for both the individual and the 

collaborative programming alternatives. 
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Table 2:  US Average Defect Discovery Rate 

 Average
Year 1 57.5%
Year 2 27.5%
Year 3 12.0%
Latent (Not found) 3.0%
Total 100.0%

 

 

Table 3:  Present Value of Costs (PVC) Analysis  

 Assumption Individual Collaborators 
Engineer Hours  1, 4 2,000 hours 2,300 hours 
Development Time (T) 4 2,000 hours 

(~52 weeks or ~12 
months) 

1,150 hours 
(~30 weeks or ~7 
months) 

Development Cost (I) 9 $100,000 $115,000 
Defect in Field (DF) 2, 3, 5, 6 293 

Discovery by Year 
(post development) 
T + Year 1 169
T + Year 2 81
T + Year 3 35 

249 
Discovery by Year 
(post development) 
T + Year 1 143
T + Year 2 68
T + Year 3 30 

Operation Cost(M) 
(sum of field costs for 
each defect, discounted 
back to time T)  

DF + 7, 8 (169*33*40)/1.10 + 
( 81*33*40)/1.102 +  
( 35*33*40)/1.103= 
325,874 

(143*33*40)/1.10 + 
( 68*33*40)/1.102 + 
( 30*33*40)/1.103= 
275,534 

Discount Rate (d) 8 10% (or 0.8% 
monthly) 

10% (or 0.8% 
monthly) 

Present Value of Life-
time Costs (PVC) 

 325874/1.00812 + 100,000 
 = $396,158 

275534/1.0087 + 115,000 
= $375,586 

PV of Cost Savings with 
CSP relative to PSP 
(PVCPSP – PVCCSP) 

 $20,572 
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Because the PVC for the collaborators is less than that of the individuals, the 

firm’s worth would gain more from a collaborative programming strategy.  In fact, using 

the parameters in the example, pair programming could cost as much as 135% of devel-

opment cost of individuals and the firm would still break even with higher quality.  The 

cost savings of CSP through time can be viewed graphically in Figure 10.  Initially, CSP 

costs more than PSP.   Through time, savings are accrued to net a positive investment. 

To paraphrase Crosby’s words [1] in Chapter 1, “Pair-quality is free . . .  Pair-

quality is not only free, it is an honest-to-everything profit maker.”   

Figure 10:  Cost Saving of CSP Through Time 
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5.1.4    Economic Advantage of Cycle Time and Product Quality 

Working in tandem, pairs were able to complete their assignments in 58% of the 

elapsed time and with higher quality than the individuals.  In today’s competitive mar-

ket, getting a quality product out as fast as possible is a competitive advantage or can 

even mean survival.  [60] stresses the importance of examining both the technical value 

and the business value of process improvements.  “And, decreased time to market, as 

well as improved product quality, are perceived as offering business value, too [60].”  

Intuitively, this is easy to believe.   

Erdogmus [56], however, builds an economic model to establish quantitatively our 

intuition and to confirm the importance of rapid development and superior quality.  The 

model incorporates several lower-level metrics into a Net Present Value Incentive 

(NPVI) measure.  The whole model is defined in Appendix F.  Two of the lower-level 

metrics are Early Entry Advantage (EEA) and Quality/Functionality Advantage (QFA).  

(EEA considers whether the market is ripe for the end product and that maximum re-

ward is achieved through immediate entry.)  If the test strategy has favorable values for 

these two metrics, as would be expected with collaborative programming, the Asset 

Value Advantage (AVA) for the test strategy is improved.  Ultimately a larger AVA im-

proves the NPVI of the test strategy making it a more desirable alternative.  

5.2 Engineer Satisfaction  

You know what I like about pair-programming?  First, it’s something that has 
shown to help produce quality products.  But, it’s also something that you can 
easily add to your process that people actually want to do.   It's a conceptually 
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small thing to add . . . And, when times get tough, you wouldn’t likely forget to 
do pair-programming or decide to drop it “just to get done.”  I just think the 
idea of working together is a winner.  [Chuck Allison in [35]] 

 

     The incorporation of pair-programming into CSP improves engineers’ job satisfac-

tion and overall confidence while attaining the quality and cycle time results discussed 

above.  Pair programmers were surveyed six times on whether they enjoyed their job 

more when pair programming.  First, an anonymous survey of professional pair pro-

grammers was run on the Internet.  (The results of this survey are reported in Appendix 

D.)  Both the summer and fall classes at the University of Utah were surveyed three 

times.   Consistently, over 90% agreed that they enjoyed their job more when pair pro-

gramming.  The results are shown in Figure 11.   

The groups were also surveyed on whether working collaboratively made them feel 

more confident about their work.  These results are even more positive.   (It is important 

to note that the fall class was surveyed for the first time before they were instructed on 

CSP and before they had ever pair-programmed.)  The results are shown in Figure 12. 
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Figure 11:  Pair Satisfaction 
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Figure 12:  Pair Confidence 
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     These results that show improved satisfaction and confidence cannot be taken lightly, 

because they could well be the difference between a pair actually following a disciplined 

process and reverting back to ad hoc procedures in the typically chaotic environment of 

software development.  Often under pressure, engineers are tempted to stop the ‘volun-

tary’ defect prevention and efficient defect removal activities and are then faced with an 

overwhelming amount of ‘involuntary’ testing and debugging.  Consider the following 

experience of PSP training in the TIS group at Hill Air Force Base.  It is important to 

note that their high CMM maturity level indicates they are already a highly disciplined 

group, much higher than most software engineering organizations.  

TIS is a high-maturity organization with a strong history of software 
process improvement.  In March 1995, TIS was assessed as a CMM 
Level 3 organization, and the assessment conducted in July 1998 rated 
them at CMM Level 5.  This is the first software engineering organiza-
tion in the Department of Defense (DoD) to receive this rating, and it is 
one of the few Level 5 software groups in the world . . . During the sum-
mer of 1996, TIS introduced the PSP to a small group of software 
engineers.  Although the training was generally well received, use of the 
PSP in TIS stated to decline as soon as the classes were completed.  
Soon, none of the engineers who had been instructed in PSP techniques 
was using them on the job. [61]” 

The SEI is addressing this issue by increasing the awareness of the Team Software 

Process (TSP) [34] that puts a management structure and awareness around PSP use by 

engineers.    However, the collaborative programming can aid in the long term use of a 

disciplined process.  First, engineers would not likely “forget” to work with their partner 

(as can often be done with activities such as design or code reviews) when under stress-

ful situations.  Indeed, they want to work with their partner; they enjoy working with 

their partner.  Further, pairs consistently report that pair-pressure causes them to follow 

procedures that they might otherwise discard if they were not working with a partner.   
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The comparisons made in this dissertation are between individuals following a dis-

ciplined process and collaborators following a disciplined process.  Actual results might 

even be better than what has been shown if the individuals revert to an ad hoc process 

while the collaborators keep each other on the disciplined track.     

5.3 Secondary Indications 

5.3.1    Collaboration and Teamwork 

The students did one four-week project in four-person teams. Seven teams were 

formed of two collaborative pairs and used the CSP as the underlying process for their 

code implementation. Three groups were formed of four individuals and used the PSP 

as the underlying process for their code implementation. The students worked at the 

CSP2.1/PSP2.1 level. They also used Watts Humphrey’s Introductory Team Software 

Process (TSPi) [34].  Teams using the TSPi use PSP to guide their individual code im-

plementation and use the team structure of TSPi to guide their team coordination 

activities.  The purpose of this phase was to examine the hypothesis that the intercom-

munication effort associated with code/system integration between programmers on a 

development team is significantly reduced with the use of pair programming.   

Unfortunately, the sample sizes of this phase were too small and did not yield statis-

tically significant results.  However, the results can be discussed for their merit.  The 

groups formed from collaborative pairs spent 28% less time than the groups formed 

from individuals with a p value of 0.410.  The groups formed from individuals actually 

passed 2% more test cases than the collaborative teams with a p value of 0.521.  These 

results do indicate that collaborative teams are more efficient than teams consisting of 
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individuals and that collaborative teams can produce code of similar quality to that of 

individuals in less time.  However, because the results are very far from being statisti-

cally significant, it is hard to draw any conclusions from the findings.  Further 

investigation is necessary, as is indicated in the Future Work section of this document.    

5.3.2    Design Quality 

Observations of the students’ code showed that the pairs produced superior high-

level project designs.  The individuals were more likely to produce “blob class [62]" de-

signs -- just to get the job done.  The design from the collaborative teams exploited 

more of the benefits of object-oriented programming.  Their classes demonstrated more 

encapsulation and had more classes with better class-responsibility alignment.  The in-

dividuals tended to have fewer classes that had many responsibilities.  The collaborative 

designs would, therefore, be easier to implement, enhance and maintain.  A confirma-

tion of their superior designs is that the pairs consistently write less code than the 

individuals to achieve the same result but with higher quality.  This could not happen if 

not for better, simpler, well thought-out designs.  The student results are shown in 

Figure 13 below.  It is a well known adage in industry that a good strategy for reducing 

maintenance costs is to reduce software size.  Pair-programming helps in this goal.  

Also, Microsoft Chief Operating Officer Robert Herbold states that, “Our challenge is to 

make software simpler. [59]” 
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Figure 13:  Relative Number of Lines of Code 
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5.3.3    Collaboration by Phase 

Ideally, pair-programmers should work together constantly.  However, reality dic-

tates that at times the pair must split – for illness, time conflicts, or even efficiency.  

Over time, experienced pair programmers have prioritized which parts of the develop-

ment cycle are most important to work together, which can be done separately, and what 

to do with the independently developed work when reuniting.  This information has 

been derived from surveys of professional programmers and students and from the self-

reporting time records of the students.  A summary of the average collaboration by 

phase records for all programs of the students is shown in Figure 14.     
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Figure 14:  Collaboration by Phase 
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5.3.3.1     Analysis and design 

Unanimously, pair-programmers agree that collaborative analysis and design is criti-

cal for their pair success.  First, it is important for the pair to collectively agree on the 

development direction and strategy outlined during these stages.  Additionally, it is 

doubtless that “two brains are better than one” when performing analysis and design.  

Together, pairs have been found to consider many more possible solutions to a problem 

and more quickly converge on which is best to implement.  Their constant feedback, 

debate, and idea exchange significantly decreases the probability of proceeding with a 

bad design.  Perhaps, the collaborators can perform tasks that might be just too chal-

lenging for one to do alone.   
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While one partner is busy typing or writing down the design, the other partner can 

think more strategically about the implications of the design and can perform a continu-

ous design review -- considering whether the design will run into a dead end or if there 

is a better strategy.  Design defects are prevented or removed almost as soon as they hit 

the paper.  A further benefit is the reduction of "design tunnel vision," which occurs 

when one makes a design decision and sticks with it no matter what.  With the partner 

reviewing and questioning decisions, the chance of exploring good design alternatives is 

increased.    

This investment in dual analyzers and developers is wise.  [10] reports that typically 

no more than 33% of development effort is spent in the pre-coding phases.  However, 

68% of the testing field errors and more than 83% of the defect removal effort is fo-

cused on fixing complex defects that were injected in the design phase.    

5.3.3.2     Code Implementation 

After developing a quality design, the pair must implement it.  Interestingly, pro-

grammers view pair-analysis and design as more critical than pair-implementation.  

Pairs report that they plan to code individually at times.  They often deliberately split for 

the more rote, routine, simple coding of a project.  They find performing this type of 

programming is more effective done individually.  It seems that some tasks, such as 

GUI drawing, are largely detail-oriented in nature. Developers report that having a part-

ner for this work doesn’t help much. Additionally, they do allow themselves to code 

average complexity modules if the situation, such as time conflicts, dictates – though 

most immediately feel notably uncomfortable and more error prone.  Some, particularly 



 

 

82

the Extreme Programmers, profess that any work done individually should be scrapped 

and redone by the pair.  However, most programmers perform a thorough review of the 

individual work and incorporate it into the project.  A small minority integrates individ-

ual work without review.  

5.3.3.3     Testing 

Pairs report that they consistently develop the test cases together.  Sometimes, how-

ever, they split up to run test cases, often side-by-side at two computers.  When defects 

are uncovered, the pairs usually rejoin to collaborate to find the best solution.  

(Much of this information has previously been reported in [35]) 

5.3.3.4     Collaboration Among the High and Low Academic Performers 

High academic performers tend to collaborate more than lower academic perform-

ers.  Based on their past GPA, members of the class were classified as high (top 25%), 

middle (mid 50%), and low (bottom 25%) past academic performers.  The percentage of 

collaboration by phase was examined for pairs with at least one high performer and for 

pairs with at least one low performer.  The results are shown in Figure 15.    Doubt-

lessly, the groups with at least one high performer collaborated significantly more than 

the groups with at least one low performer.  In an academic setting, the students must 

make the effort to coordinate schedules in order to collaborate.  The high achievers saw 

enough value in collaboration to put forth this effort consistently.  The lower achievers 

did not make as much effort to collaborate, though they still did collaborate more than 

70% of the time.  
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Figure 15:  Average Collaboration by Phase for Performance Types 
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5.3.4    Collaboration Perhaps Not for All 

All students took the Meyer-Briggs [63, 64] test, which has been used in many stud-

ies to indicate personality type.  The personality test classifies people into one of sixteen 

personality types.   

The Meyers-Briggs’ sixteen personality types are based on combinations of four in-

dicators.  The test indicates which of each of these four indicators is stronger.  These 

four indicators are briefly described: 

• = Extraversion or Introversion:  Extraverts (E) are talkative and social.  In-

troverts (I) are quiet and private. 

• = Sensation or Intuition:  Indicates whether a person is more likely to obtain 

input from external observation (S) or introspective inner feelings (I) 
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• = Thinking or Feeling:  Thinkers (T) govern themselves with their heads, 

their concepts and their percepts.  Feelers (F) follow their heart, which 

means most of what they do is based on emotion or desire. 

• = Judgment or Perception:  People with high judgment (J) make and keep 

schedules in their daily life.  People who rank high in perception (P) pre-

fer to probe for options and not be tied to a schedule. 

Almost half (19/41) ranked high in both Introversion (I) and Judgment (J).  (In 

Meyer’s Briggs’ notation, this makes them IxxJ personality types.)  This means many in 

the class were introverted and followed a schedule daily.  These results are not surpris-

ing for a class of computer scientists.   

However, it is notable that on the first day of class, six of the seven students that 

indicated they did not want to try collaborative programming were IxxJ personality 

types.  Perhaps they were resistant to needing to constantly communicate with and to 

coordinate schedules with another.  This is not seen as an insurmountable personality 

type that is a barrier to collaborative programming, though.  The other 13 IxxJ students 

were very successful collaborators. 

In Appendix D are the results of a survey of professional collaborative pro-

grammers.  A question on the survey probed whether the programmer had ever tried and 

failed to pair with another engineer.  Most indicated that they were never unable to col-

laborate.  Excess or too little ego, not personality type, was cited as the main problem in 

those that did have difficulty.            
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5.3.5    Gender and Personality-Type Considerations 

     There were six females and 35 males in the experimental class.  As outlined in 

Appendix A, when student pairs were formed, specific attention was placed to ensure 

that groups were made up of a diversity of (seven) male-male, (four) male-female, and 

(one) female-female pairs.  Additionally, attention was placed on ensuring a variety of 

Meyers-Briggs personality type combinations.  These factors were carefully considered 

in order to study possible factors for successful collaboration.  However, there were no 

conclusive findings based on gender or personality types.  This is mainly because all 

pairs were deemed to be successful collaborators.  There were no trends of the follow-

ing: 

• = groups not getting along 

• = groups consistently spending more or less time completing their task than the 

average 

• = groups consistently achieving far better or worse quality than the average 

Performance differences could easily be attributed to past academic performance. 



 

 

CHAPTER 6 

SUMMARY AND CONTRIBUTIONS 

Dr. W. Edwards Deming, legendary quality consultant, led sweeping manufacturing 

quality revolutions in both Japan and the US beginning in the 1950’s.  His teachings 

dramatically altered the economy of Japan (creating the opportunity for the US to “catch 

up”).  His Total Quality Management (TQM) practice stressed the importance of study-

ing and understanding in great depth the process of the production or service you are 

delivering.  He defined “Deming’s 85/15 rule:  85% of a worker’s effectiveness is de-

termined by the system he works within, only 15% by his own skill [9].”  Considering 

these of Deming’s philosophies, the merits of the research outlined in this dissertation 

will be discussed.  

6.1 Studying and Understanding the Process 

Deming stresses the importance of studying and understanding your process.  His 

message to manufacturers was clear:  Design in quality at the beginning of the develop-

ment process, instead of “testing in” pseudo-quality at the end of the production line 

[59].  The Collaborative Software Process (CSP) synchronizes with this philosophy.  A 

significant assumption behind the designation of CSP as a high quality process is the 

use of pair-programming.  With pair-programming, two software engineers work side-

by-side at one computer – together producing one design, algorithm, code, or test arti-
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fact.  At any one time, one of the engineers is the “driver” who is actively creating and 

recording the artifact.  The other partner is constantly observing, critiquing, strategizing 

on, and improving upon the work of the driver.  The engineers periodically switch roles. 

 Both are continuous, active participants in their joint creation.      

Requirements analysis begins with the development of use classes, which are thor-

oughly explored through the development of the Use Case Flow of Events.    The 

scenarios, which emerge through the development of use cases, are used in the CRC 

Card brainstorming session.  The goal of this brainstorming session is the interactive 

development of a high-level class diagram.  The pair then reviews the design.   

Once the design is documented and reviewed, the collaborative pair begins the itera-

tive process of developing a high quality implementation.  The high-level design is 

broken into smaller increments.  Together they iteratively perform low-level design and 

review, create test cases and code, perform a code review, compile and execute test 

cases.  

Throughout all this process, the pair is recording information about the amount of 

time they spend on various stages of the process and about the defects they find and re-

move from their product.  By following defined procedures, this data is turned into 

valuable information the pair can used to evaluate the effectiveness of their process and 

to adjust their joint process accordingly.  Using this information as well as qualitative 

knowledge of how their process went, the pair documents what worked and what did not 

work about what they did in order to perform continual process improvement.  

In analyzing Deming’s directive “understand your process for delivering a quality 

product” CSP excels.  The Personal Software Process (PSP) has been shown to be a sig-
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nificant improvement over mainstream, ad hoc software development.  When compared 

quantitatively, the CSP demonstrates a marked improvement over the PSP for delivering 

high quality products.  The incorporation of pair-programming paves the way for con-

tinually improving defect prevention and extremely efficient defect removal.  The 

process incorporates a systematic, continual evaluation of the overall process effective-

ness. 

6.2 The System the Engineer Works In 

Deming asserts that 85% of a worker’s effectiveness is determined by the system he 

works within, only 15% by his own skill.  A defined, quality process, such as the CSP, 

provides a disciplined system for the engineer to work in.  However, the collaboration of 

the CSP maximizes the performance of the engineer beyond his or her own skill.  In 

fact, the collaboration of the CSP has been shown to improve the engineer’s own skill 

through various factions of pair-learning – through apprenticeship and through the con-

tinual design and code reviews that take place. 

Collaboration has been shown to improve the engineers’ joint ability to derive the 

best solutions and to evolve solutions to unruly or seemingly impossible problems.   

Theories from the science of Distributed Cognition support the notion that different 

skills and perspectives each of the pair bring to the task and their desire to succeed at a 

common goal causes them to explore a larger number of alternatives and to negotiate 

the best course of action.  Pairs are also observed to attack hard problems with a “tag-

team” approach whereby each partner, in turn, incrementally contributes to the solution. 
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Collaboration also improves the system in which the engineers work.  Pairs tend to 

positively pressure their partners into a higher level of performance and into consistently 

following the prescribed process.  In industry, the engineers generally pair with different 

partners on a regular basis.  This has been shown to reduce the risk to the project of sev-

eral individuals being the primary technological assets of the project; the untimely loss 

(through job change or accident) of any of these individuals could devastate the project. 

 Additionally, pair rotation has been shown to greatly improve teamwork and communi-

cation among the team.  Lastly, almost unanimously, pair programmers claim to be 

happier and more confident on the job when pair programming.               

6.3 Summary of Contributions 

The two primary contributions of this research are the Collaborative Software Proc-

ess and the quantification of the benefits of collaborative programming.  Mature 

engineering disciplines generally follow proven, documented procedures to reliably pro-

duce high quality products.  As Software Engineering strives to mature, proven 

processes are necessary.  The Collaborative Software Process makes a contribution.  

This research has defined and validated the effectiveness of a disciplined process for a 

collaborative pair of software engineers. 

The quantitative study that validated the effectiveness of CSP also legitimized the 

practice of pair-programming.  In the experiment, the independent variable between the 

control group and the experimental group was the use of pair-programming.  Therefore, 

the increased quality demonstrated by the pairs can be attributed to the collaboration.  

Additionally, the pairs spent only statistically insignificant more time working on their 
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programs.  Therefore, the quality gains can be realized with little or no increase in de-

velopment time.  Factoring in field support cost savings of increased quality and the 

benefits of reduced cycle time, the collaborative teams are less expensive overall.   Ad-

ditionally, many quantitative benefits to the software firm and to the individual are 

realized with pair programming.   In short, all paths point to pair-programming. 

One professional programmer reported that, despite many successes, pair-

programmers were ordered to work individually at his workplace.  His management 

simply could not believe that it was cost effective.  The results of this research have al-

ready been used by many professional programmers who want to justify continuing and 

to justify initiating the prevalent use of pair programming as they strive to delight their 

customers with high quality products on schedule. 

 

 

 



 

 

CHAPTER 7 

FUTURE WORK  

These findings have spawned many more research ideas: 

1. Industrial Validation.  The validation of the CSP was a carefully planned em-

pirical study.  An important consideration in empirical research design is 

external validity, the ability of the experimental results to apply to the world out-

side the research situation.  The results outlined in the dissertation are conclusive 

and can be meaningfully applied to professional programmers because the re-

search studied the interactions between and efficiencies of two programmers 

working collaboratively.  These issues would not be complicated by the com-

plexity or scale found in industry.  Indeed, several professional programming 

organizations have begun to justify pair-programming from the publications re-

sulting from this research.  Nonetheless, formal re-validation of the results with 

professional programmers in an industrial setting would be beneficial. 

2. Brook’s Law.  Over 25 years ago, Frederick Brooks taught us that adding man-

power to a late project makes it later due in a large part to added communication 

costs.  Pairing programmers cuts the necessary communication paths in half.  It 

would be interesting to study the effects of collaborative programming in a lar-

ger team setting to examine the communication efficiencies.  
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3. Distributed Cognition.  Many of the observations and findings on collaborative 

programming can be supported by theories in the distributed cognition area of 

cognitive science.  Investigating these ties further would be interesting research. 

4. Distributed Collaboration.  An exciting area of Computer Science is Distrib-

uted Collaboration.  Many tools are being developed to support collaboration 

between team members who are physically separated.  Further study could ana-

lyze whether the efficiencies and gains seen with physically co-located 

programmers can be realized with distributed pairs.     

5. Pair-Learning.  “Traditionally, collaboration in the classroom . . . has been ta-

boo, condemned as a form of cheating.  Yet what we discover . . . is that 

collaboration can only make our classrooms happier and more productive [38].” 

 An unexpected result of the experiment was the observations of the intense 

benefits of pair-learning and pair-programming for students learning a new pro-

gramming language.  Students are happier and learn faster.  Pairs continuously 

teach each other.  Students no longer look solely to the teaching staff for techni-

cal help, and therefore the workload of the teaching staff is reduced.  It would be 

useful to quantify these benefits in order to justify the benefits of pair-learning to 

other instructors.  Indeed, Larry Constantine, who’s observation of P. J. 

Plaugher’s software company were reported in the Related Works chapter, noted 

that “. . . for language learning, there seems to be an optimum number of stu-

dents per terminal.  It’s not one . . . one student working alone generally learns 

the language significantly more slowly than when paired up with a partner [19].” 
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6. eXtreme Programming.  The eXtreme Programming methodology employs 

many techniques counter to currently accepted software engineering practice.  

Therefore, isolating which factor to attribute its reported success is difficult.  

This dissertation research established that employment of pair-programming 

contributes to their success.  Additional research could help dissect additional 

contributing factors.   

7. Economic Net Present Value Analysis.  Section 5.1.4    and Appendix F utilize 

an economic model [56], which incorporates various lower-level metrics into 

Net Present Value Analysis.  Most of this model is concretely defined in mathe-

matical formulae.  However, one of the inputs, Quality/Function Advantage 

(QFA), is still theoretical.  Research into defining a concrete formula for QFA 

would complete the model.  The model could then be utilized for a complete, 

concrete evaluation of the Net Present Value of software process alternatives 

that improve the quality of software.  

 



 

 

APPENDIX A 

EXPERIMENTAL DESIGN 

The validation of the Collaborative Software Process was based on an empirical 

study of students at the University of Utah.  The details of this experiment were submit-

ted to the Institutional Review Board (IRB) at the University of Utah. The role of the 

IRB is to determine if they believe the rights of the students will be violated in any way 

by their participation in an experiment. The IRB deemed that this study was exempt 

from their surveillance. In order to be declared exempt, an experiment must be con-

ducted in an established educational setting and involve normal educational practices in 

order to evaluate or compare regular or special educational instructional strategies, cur-

ricula or methods.  

The study was based on two courses taught in Summer Semester 1999 and Fall Se-

mester 1999.  The Summer class was an exploratory, preparatory class in which CSP 

was initially used and reviewed.  Based on student feedback, CSP was revised for the 

Fall class.  The Fall class was the primary experimental class through which the major-

ity of the quantitative evidence was obtained.  A Windows NT data collection and 

analysis web application was developed as part of this research.  The application was 

used to accurately obtain data from and provide feedback to the students, as easily as 

possible for the students.  The details of both classes will be examined in this section.   
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Summer 1999 

     The class, Collaborative Development of Active Server Pages, consisted of 20 

juniors and seniors.  The students were very familiar with programming, but not with 

the Active Server Pages (ASP) web programming languages learned and used in the 

class.  One class period per week was spent learning the Collaborative Software Proc-

ess.  The other class period each week was spent learning the web programming 

languages.  The students applied their newly acquired CSP knowledge and practices 

when developing the class assigned web programming projects.  

     The majority of the students had only used WYSIWYG web page editors prior to 

taking the class.  During the eleven-week semester, the students learned advanced 

HTML, JavaScript, VBScript, Active Server Page Scripting, Microsoft Access/SQL and 

some ActiveX commands.  In many cases, the students would need to intertwine state-

ments from all these languages in one program listing – some of the content running on 

the browser and some running on the NT server, adding to the overall complexity of the 

program.  Upon course completion, the students were all writing web scripts that had 

significant dynamic content that accessed and updated a Microsoft Access database – 

applications similar (though smaller) to what you would find on a typical e-commerce 

web site.  

Each student was paired with another student to work with for the entire semester.  

At the start of the class, the students were asked whom they wanted to work with and 

whom they did not want to work with.  Of the ten collaborative pairs, eight pairs were 

mutually chosen in that each student had asked to work with their partner.  The last two 

pairs were assigned because the students did not express a partner preference.  Tests 
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were, however, taken individually.  They understood that they were not to break the 

class project into two pieces and integrate later.  Instead they were to work together (al-

most) all the time on one product.  These requirements were stated in the course 

announcement and were re-stated at the start of the class.  The students received instruc-

tion in effective pair-programming and read a paper [48] which helped prepare them for 

their collaborative experience.  Most skeptically, but enthusiastically, embarked on 

making the transition from solo to collaborative programming.   

The students kept a password protected web-page journal during the class in which 

they recorded their impressions of using CSP each week.  Each week they were given a 

different set of questions to answer in their journal.  Some example questions are listed 

below: 

1. It has been said among teachers, “You do not know it unless you can teach 

it.”  Do you find any value to yourself in explaining your work to your part-

ner? 

2. Do you feel like you have learned anything about Active Server Pages pro-

gramming just by reading your partner’s code? 

3. What was the biggest hurdle you have had to overcome as a collaborative 

programmer? 

4. What kinds of things does the non-driver do as he/she observes? 

5. Which development phases have you tried to work together the most? 

6. If you work separately, what do you do with the separate work when you get 

back together? 
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7. Which development phases have you found it is OK to work separately at 

times on? 

8. What do you think is the biggest advantage of collaborative programming? 

9. What do you think is the biggest problem with collaborative programming? 

 Additionally, three times throughout the semester, the students completed anony-

mous surveys on their collaborative experience.  Lastly, as part of the final exam, the 

students wrote a letter objectively giving advice to future collaborative programmers.  

These observations and critiques were used to update and enhance the CSP process prior 

to a structured experiment and were reported in several papers  [36, Williams, submitted 

to IEEE Software #45, Cockburn, 2000 #58] and throughout this document.    

Fall 1999 

     The class, Senior Software Engineering (CS4510), consisted of 41 juniors and 

seniors.  The students learned of the experiment during the first class. They had to be 

informed that it is an experiment because, as outlined below, some students completed 

class programming projects individually and some worked in pairs. Additionally, they 

were strongly encouraged to report all data accurately during the semester because of the 

importance of the outcome.  Generally, the students responded very favorably to being 

part of an experiment that could drastically change the way software development could 

be performed in the future.  

On the first day of class, the students were asked if they preferred to work collabora-

tively or individually, whom they wanted to work with, and whom they did not want to 

work with.  Additionally, the students took a Meyers Briggs personality test [63].  The 

students were also classified as “High” (top 25%),  “Average,” or “Low” (bottom 25%) 
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academic performers based on their GPA.   The GPA was not self-reported; academic 

records were reviewed. 

Using this information, the twenty-eight students were then assigned to Group C 

(Collaborative) and thirteen to Group I (Individual).  (Several students dropped the class 

after the initial assignment.  These numbers reflect the students who completed the 

class.)  Group C students completed their collaborative assignments using the CSP.  

Group I students completed all assignments using a modified version of PSP.  The PSP 

was modified from that defined in [11] in order to parallel the CSP (e.g. use cases).  

(Differences between PSP and CSP are outlined in Chapter 3.)  The students were as-

sured that grades would be curved, as necessary, independently for each of the groups to 

ensure that neither group would get an advantage in being academically successful in 

the class.  

The GPA was used to ensure that the groups are academically equivalent.  Ulti-

mately (after the students had dropped out), Group C consisted of 7 high performers, 16 

average performers, and 5 low performers.  Group I consisted of 5 high performers, 5 

average performers, and 3 low performers.  The students were also grouped to ensure 

there was a sufficient spread of high-high, high-average, high-low, average-average, av-

erage-low, and low-low pair grouping.  This was done in order to study the possible 

relationship between previous academic performance and successful collaboration.         

Of the fourteen collaborative pairs, thirteen pairs were mutually chosen in that each 

student had asked to work with their partner.  The last pair was assigned because the 

students did not express a partner preference.   



 

 

99

   The students from both groups received instruction in effective pair-programming 

and were given a paper [48] and several of the “letters to a future collaborative pro-

grammer” written by the Summer Semester class.  These helped prepare them for their 

collaborative experience.   

The majority of the students were familiar with the Personal Software Process 

(PSP), on which CSP was based, because they had been instructed on it in their CS1 and 

CS2 class using the Introduction to the Personal Software Process book [40].  The 

CS4510 used the more advanced PSP book, A Discipline for Software Engineering [11]. 

The PSP is documented through many process scripts, templates and forms.  The CSP, 

modeled on the PSP, also uses this documentation framework.  Between the two proc-

esses, some of the documentation artifacts are very similar; others might be significantly 

different.  In the cases where a particular artifact differs between the CSP and the PSP, 

both were taught to the entire class. For example, there was a class dedicated to the code 

review sub-process. The procedures for doing code review alone (PSP) and for doing 

code review collaboratively (CSP) were both be discussed and contrasted. All aspects of 

the development cycles for both PSP and CSP were taught to all students.  

The experiment proceeded in phases as defined below: 

Pre-treatment: Each student completed one program individually, using PSP Level 

0, which is essentially their current process with the addition of tracking the amount of 

time they spend on the program and the defects they remove during their process. This 

phase got them used to the data entry procedures. The data was used as a "pre-

treatment" baseline for all students.  The purpose of the pre-treatment was to determine 

if there were any significant performance changes for individuals when they worked in-
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dividually versus when they worked collaboratively.  No such changes were consistently 

observed.  Performance in the class was very coherent with the student’s past academic 

performance. 

Treatment:  Four assignment cycles were completed during the treatment phase of 

the experiment.  During each cycle, the individuals completed one assignment and each 

collaborative team completed two assignments.  During this phase, the students pro-

gressed from PSP/CSP0.1 to PSP/CSP2.0.   

Post-treatment: Each student completed one program individually.  The data was 

used as a "post-treatment" measure for all students.  As with the pre-treatment, the pur-

pose of the post-treatment was to determine if there were any significant performance 

changes for individuals when they worked individually versus when they worked col-

laboratively.  No such changes were consistently observed.  Performance in the class 

was very coherent with the student’s past academic performance.  Therefore, no addi-

tional findings were gained by the post-treatment.  

Team: The students did one four-week project in four-person teams. Seven Group C 

teams consisted of two collaborative pairs and used the CSP as the underlying process 

for their code implementation. Three Group I students consisted of four individuals and 

used the PSP as the underlying process for their code implementation. The students 

worked at the CSP2.1/PSP2.1 level. They also used Watts Humphrey’s Introductory 

Team Software Process (TSPi) [34].  Teams using the TSPi use PSP to guide their indi-

vidual code implementation and use the team structure of TSPi to guide their team 

coordination activities.    
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The purpose of this phase was to examine the hypothesis that the intercommunica-

tion effort associated with code/system integration between programmers on a 

development team is significantly reduced with the use of pair programming.  Unfortu-

nately, the sample sizes of this phase were too small and did not yield statistically 

significant results. 

It must be noted that in both the summer and the fall classes, specific measures were 

taken to ensure that the pairs worked together consistently each week.  In the summer 

class, one day each week the formal Active Server Page instruction was followed by ex-

ercises in which the pairs worked together.  In the fall class, one class period each week 

was allotted for the students to work on their projects.  Additionally, the students were 

required to attend two hours of office hours with their partners each week where they 

also worked on their projects.  It is critical for student pairing success to establish these 

regular meeting times, lest the students get too involved in other classes and their jobs 

and never get together.  During these regular meeting time, the pairs jelled or bonded 

and were much more likely to establish additional meeting times to complete their work. 

   

Experiment Validity 

Specific details of this empirical study have been designed to adhere to principles of 

good research study design, as outlined in [65].  

A common research study threat is caused by the Hawthorne effect. "The Hawthorne 

effect refers to a change in sensitivity, performance, or both by the subjects that may 

occur merely as a function of being in an investigation . . . The Hawthorne effect be-
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comes a threat to internal validity when one group receives such a "special" treatment 

and another does not, thereby introducing a systematic difference between groups in ad-

dition to the experimental variable [65]." Since both groups will receive the same 

information about the study and in all lecture materials, the Hawthorne effect should not 

pose a threat to this study.  

Factors to ensure internal validity were carefully considered. Drew defines internal 

validity as:  

The technical soundness of a study. A study is internally valid or has 
high internal validity when all the potential factors that might influence 
the data are controlled except the one under study. This would mean that 
the concept of control had been successfully implemented. If, for exam-
ple, two instructional methods were being compared, internal validity 
would require that all differences between groups (e.g. intelligence, age) 
be removed except the differences in the instructional method, which is 
the experimental variable [65]. 
 

In this case, the experimental variable is the act of solo programming vs the act of 

collaborative programming. Efforts have been made to remove other differences be-

tween the groups.  GPA statistics were analyzed to balance the potential for success of 

both groups. All students received the same information. Software processes, such as 

the CSP and PSP, define steps for developing software to achieve predictable results. 

This process structure also improves the internal validity of the study because all the 

students should be using the same defined, repeatable process to develop their assign-

ments. 

Factors affecting external validity were also carefully considered to ensure the re-

search and the experiment results will be considered viable by researchers and 

practitioners. Drew defines external validity as: 
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The generalizability of results from a given study. External validity in-
volves how well the results of a particular study apply to the world 
outside the research situation. If a study is externally valid or has con-
siderable external validity, one can expect that the results are 
generalizable to a considerable degree [65]. 

Often empirical software engineering studies involving students are not highly re-

garded research because it is not viewed that projects done in a semester need deal with 

issues of scope or scale that often complicate real, industrial projections. Even Watts 

Humphrey – working in an industrial organization, did his initial PSP studies on stu-

dents, because he could not find any real project that would risk its success on a new 

process. However, he says "You can apply PSP principles to almost any software-

engineering task because its structure is simple and independent of technology -- it pre-

scribes no specific languages, tools or design methods." His study, involving students, 

was highly regarded, respectable research.  CSP, though on a slightly larger scale be-

cause it involves two programmers, can be considered likewise.  Also, an experiment 

was performed on seniors at Carnegie Mellon involving communication metrics for 

software development. "Such a test-bed represents an ideal environment for empirical 

software engineering, providing sufficient realism while allowing for controlled obser-

vation of important project parameters [66]." This empirical study of this dissertation 

involves the interactions between and efficiencies of two programmers working collabo-

ratively. Issues of complexity and scale are not inhibitors to the external validity of a 

study of CSP with students at the University of Utah.  
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APPENDIX B 

THE COLLABORATIVE SOFTWARE  

PROCESS (CSP) DOCUMENTATION 

Table 4:  CSP Documentation Cross-Reference 

 Table Number 
Process Level All CSP0 CSP0.1 CSP1 CSP1.1 CSP2 CSP2.1 
Process Scripts and Summaries 
Process Script  4 14 23 29 41 45 
Planning Script  5 15 24 24 42 46 
Development 
Script 

 6 16 25 30 30 47 

Postmortem Script  7 17 26 31 31 48 
Project Plan 
Summary and In-
structions 

 8 
9 

18 
19 

18 
19 

32 
33 

43 
44 

43 
44 

PROBE Estimat-
ing Script 

See [11] Appendix C Table C36 X X 

Forms, Templates, Standards and Instructions 
Time Recording 
Log 

10 
11 

X X X X X X 

Defect Recording 
Log 

12 
13 

X X X X X X 

Process Improve-
ment Proposal 

20 
21 

 X X X X X 

Coding Standard 22  X X X X X 
Use Case Flow of 
Events and In-
structions 

27 
28 

  X X X X 

Individual 
Code Review 
Checklist 

34    X X X 

Collaborative 35    X X X 
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 Table Number 
Process Level All CSP0 CSP0.1 CSP1 CSP1.1 CSP2 CSP2.1 
Code Review 
Checklist 
Individual Design 
Review Checklist 

36    X X X 

Collaborative De-
sign Review 
Checklist 

37    X X X 

Test Case Tem-
plate and 
Instructions 

38 
39 

   X X X 

Test Coverage 
Checklist 

40    X X X 

Size Estimating 
Template 

See [11] Appendix C Tables C39 and C40 X X 

Task Planning 
Template 

See [11] Appendix C Tables C47 and C48 X 

Schedule Planning 
Template 

See [11] Appendix C Tables C49 and C50 X 

 

Note:  An X indicates that the form, template or script indicated in the “All” column 

is appropriate at that level.  (Conversely, a blank square indicates that the form is not 

used at that level.) 
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Table 5:  CSP0 Process Script 

Phase 
Number 

Purpose To guide you in collaboratively developing module-level 
programs 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty Time and Defect Recording Logs  
• = Stop watch (optional) 

1 Planning • = Produce or obtain a requirement statement  
• = Estimate the required development time of both part-

ners  
• = Enter the plan data in the Project Plan Summary form  
• = Record the time spent in the Time Recording Log for 

Planning 
2 Development • = Design the program  

• = Implement the design  
• = Compile the program and fix and log all defects found  
• = Test the program and fix and log all defects found  
• = Record the time spent in these activities in the Time 

Recording Log in the appropriate phase 
3 Postmortem • = Complete the Project Plan Summary form with actual 

time, defect, and size data 
 Exit Criteria • = A thoroughly tested program  

• = Completed Project Plan Summary with estimated and 
actual data  

• = Completed Defect and Time Recording Logs 
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Table 6:  CSP0 Planning Script 

Phase 
Number 

Purpose To guide the CSP planning process 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty Time Recording Log 

1 Program Re-
quirements 

• = Produce or obtain a requirements statement for the pro-
gram  

• = Ensure the requirements statement is clear and unambi-
guous  

• = Resolve any questions 
2 Estimate Re-

sources 
• = Make your best estimate of the time (for both partners) 

required to develop this program 
 Exit Criteria • = A documented requirements statement  

• = Estimated development time data entered in the Project 
Plan Summary  

• = Actual time spent planning entered in the Time Re-
cording Log 
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Table 7:  CSP0 Development Script 

Phase 
Number 

Purpose To guide the development of small programs 

 Entry criteria • = Requirements statement  
• = Project Plan Summary with planning completed  
• = Time and Defect Recording Logs with planning com-

pleted  
Note: The terms driver and non-driver are used below. The driver is the partner who 
has control of the recording medium (ex: paper, computer keyboard) and is recording 
the design or implementing code or fixing code. The non-driver is the other partner who 
is actively observing the driver -- identifying defects, giving suggestions, etc. When a 
partner is working alone, he or she is considered the driver, and no one is filling the 
non-driver role. 
1 Design • = Review the requirements and produce a design to meet 

them via discussions between partners.  
• = The driver records the design in pre-determined for-

mat/on pre-determined medium.  
• = The non-driver observes to ensure the design is being 

recorded efficiently and effectively meets the require-
ments.  The non-driver identifies defects and gives 
suggestions for alternative designs.  

• = Periodically, switch drivers.  
• = Record design time in the Time Recording Log 

2 Code • = Implement the design.  
• = The driver implements the design by typing code via 

the keyboard.  
• = The non-driver is observes to ensure the code properly 

implements the design, identifying defects whenever 
necessary and giving suggestions for alternative im-
plementations.  

• = Periodically, switch drivers.  
• = Record any requirements or design defects in the De-

fect Recording Log  
• = Record coding time in the Time Recording Log 

3 Compile • = Compile the program until error-free.  
• = Both partners identify and discuss all defects found and 

the possible implications of these defects elsewhere in 
the code.  

• = The driver implements the code changes by fixing code 
via the keyboard.  

• The non-driver observes to ensure the fix is properly 
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implemented, identifying erroneous fix implementa-
tions.  

• = Periodically, switch drivers.  
• = Record all defects found in Defect Recording Log  
• = Record compile time (until program compiles error-

free) in the Time Recording Log 
4 Test • = Test until all tests cases run without error  

• = Both partners identify and discuss all defects found and 
the possible implications of these defects elsewhere in 
the code.  

• = The driver implements the code changes by fixing code 
via the keyboard.  

• = The non-driver observes to ensure the fix is properly 
implemented, identifying erroneous fix implementa-
tions.  

• = Periodically, switch drivers.  
• = Record defects in the Defect Recording Log  
• = Record test time (until all test cases run error-free) in 

the Time Recording Log 
 Exit Criteria • = A thoroughly tested program  

• = Completed Defect Recording Log  
• = Completed Time Recording Log 
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Table 8: CSP0 Postmortem Script   

Phase 
Number 

Purpose To guide the CSP postmortem process 

 Entry criteria • = Problem description and requirements statement. 
• = Project Plan Summary with planned development time. 
• = Completed Time Recording Log  
• = Completed Defect Recording Log  
• = A tested and running program 

1 Defects In-
jected 

• = Determine from the Defect Recording Log the number 
of defects injected in each phase.  

• = Enter this number under Defects Injected -- Actual on 
the Project Plan Summary 

2 Defects Re-
moved 

• = Determine from the Defect Recording Log the number 
of defects removed in each phase.  

• = Enter this number under Defects Removed -- Actual on 
the Project Plan Summary 

3 Time • = Review the completed Time Recording Log  
• = Enter the total time spent in each phase under Actual 

on the Project Plan Summary 
 Exit Criteria • = A fully tested program  

• = Completed Project Plan Summary Form  
• = Completed Defect Recording Log and Time Recording 

Log 
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Table 9:  CSP0 Project Plan Summary 

Student  Date  
Program  Program #  
Instructor  Language  

 
Time in 
Phase 
(min.) 

     Plan  Total 
Actual 

 To Date 
%   

 Individual  Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
  Postmortem      
      Total      

      
      

Defects In-
jected 

  Actual    Individual Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
      Total       

      
Defects 
Removed 

 Actual  Individual Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
      Total       

 



 

 

112

Table 10:  CSP0 Project Plan Summary Instructions    

Purpose This form holds the estimated and actual project data in a conven-
ient and readily retrievable form 

Header Enter the following: 
• = Your name and today’s date. 
• = The program name and number.  
• = The instructor’s name.  
• = The language you used to write the program.  

Time in Phase • = Under Plan, enter your original estimate of the total development 
time.  

• = Under Actual, enter the total actual time in minutes spent in each 
development phase (should be the sum of the Individual and Col-
laborative time). 

• = Under Individual, enter the total actual time spent by any partner in-
dividually 

• = Under Collaborative, enter the total actual time spent the partners 
collaboratively 

• = Under To Date %, enter the percentage of Total time (versus your 
plan) in each phase. 

Defects In-
jected 

• = Under Actual, enter the number of defects injected in each phase 
(should be the sum of the Individual and Collaborative defects). 

• = Under Individual, enter the total defects time injected by phase when 
a partner was working individually 

• = Under Individual, enter the total defects time injected by phase when 
the partners were working collaboratively 

Defects Re-
moved 

• = Under Actual, enter the number of defects removed in each phase 
(should be the sum of the Individual and Collaborative defects). 

• = Under Individual, enter the total defects time removed by phase 
when a partner was working individually 

• = Under Individual, enter the total defects time removed by phase 
when the partners were working collaboratively 
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Table 11:  Time Recording Log 

Student  Date  

Instructor  Class  

Program     

Date Start Stop Interrupt 
Time 

Delta 
Time 

Phase Collab 
or In-
div 

Comment 
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Table 12:  Time Recording Log Instructions 

Purpose This form is for recording the time spent in each project phase.
These data are used to complete the Project Plan Summary 

General • = Record all the time you spend on the project. 
• = Record the time in minutes. 
• = Be as accurate as possible. 

Header Enter the following: 
• = Your name 
• = Today’s date 
• = The instructor’s name 
• = The number of the program 

Date Enter the date when the work was performed. 
Example 10/18 
Start Enter the time when you start working on a task. 
Example 8:20 
Stop Enter the time when you stop working on that task. 
Example 10:56 
Interruption 
Time 

Record any interruption time that was not spent working on the task and 
the reason for the interruption. 
If you have several interruptions, enter their total time. 

Example 37 min  -- took a break 
Delta Time Enter the clock time you actually spent working on the task, less the inter-

ruption time. 
Example From 8:20 to 10:56, less 37 minutes, or 119 minutes. 
Phase Enter the name of the development phase being worked on. 
Example Planning, Design, Design Review, Code, Code Review, Compile, Test 
Collab or 
Indiv 

Enter C if the work was performed collaboratively.  Enter I if the work 
was done individually. 

Comments Enter any other pertinent comments that may later remind you of any un-
usual circumstances regarding this activity. 

Example “Had a compiler problem, had to get help.” 
Important It is important to record all worked time.  If you forget to record the starting, stopping, or 

interruption time for a task, promptly enter your best estimate of the time. 

 



 

 

115

Table 13:  Defect Recording Log 

Student  Date  
Instructor  Class  
Program     
Date Def. 

Num. 
Phase 
Injected 

Phase 
Removed 

Fix 
Time 

Collab 
or In-
div 

Description 
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Table 14:  Defect Recording Log Instructions 

Purpose This form is for recording each defect you find and fix. 
These data are used to complete the Project Plan Summary 

General • = Record all the defects you find in review, compile and test. 
• = Record each defect separately and completely. 
• = Be as accurate as possible. 

Header Enter the following: 
• = Your name 
• = Today’s date 
• = The instructor’s name 
• = The number of the program 

Number Enter the defect number.  For each program, this should be a sequential 
number starting with 1. 

Phase In-
jected 

Enter the phase during which this defect was injected.  Use your best 
judgment. 

Phase Re-
moved 

Enter the phase during which this defect was removed.  This will generally 
be the phase during which you found the defect. 

Fix Time Enter your best judgment of the time you took to fix the defect.  This time 
can be determined by using a stop watch or your judgment. 

Collab or 
Indiv 

Using your best judgment, enter C if you believe the defect was injected 
during collaborative work.  Enter I if you believe the defect was injected 
during individual work. 

Description Write a succinct description of the defect that is clear enough to later re-
mind you about the error and help you to remember why you made it. 
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Table 15:  CSP0.1 Process Script 

Phase 
Number 

Purpose To guide you in collaboratively developing module-level 
programs 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty Time and Defect Recording Logs  
• = Stop watch (optional) 

1 Planning • = Produce or obtain a requirement statement  
• = Estimate the total new and changed LOC required  
• = Estimate the required development time of both part-

ners  
• = Enter the plan data in the Project Plan Summary form  
• = Record the time spent in the Time Recording Log for 

Planning 
2 Development • = Design the program  

• = Implement the design  
• = Compile the program and fix and log all defects found  
• = Test the program and fix and log all defects found  
• = Record the time spent in these activities in the Time 

Recording Log in the appropriate phase 
3 Postmortem • = Complete the Project Plan Summary form with actual 

time, defect, and size data 
 Exit Criteria • = A thoroughly tested program  

• = Completed Project Plan Summary with estimated and 
actual data  

• = Completed Process Improvement Proposal (PIP) 
form  

• = Completed Defect and Time Recording Logs 
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Table 16:  CSP0.1 Planning Script    

Phase 
Number 

Purpose To guide the CSP planning process 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty Time Recording Log 

1 Program Re-
quirements 

• = Produce or obtain a requirements statement for the pro-
gram  

• = Ensure the requirements statement is clear and unambi-
guous  

• = Resolve any questions 
2 Size Estimate • = Make your best estimate of the total new and changed 

LOC required to develop this program 
3 Resource Es-

timate 
• = Make your best estimate of the time (for both partners) 

required to develop this program 

• = Make your best estimate of the total new and changed 
LOC required to develop this program 

 Exit Criteria • = A documented requirements statement  
• = Estimated development time and program size data 

entered in the Project Plan Summary  
• = Actual time spent planning entered in the Time Re-

cording Log 
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Table 17:  CSP0.1 Development Script  

Phase 
Number 

Purpose To guide the development of small programs 

 Entry criteria • = Requirements statement  
• = Project Plan Summary with planning completed  
• = Time and Defect Recording Logs with planning com-

pleted  
• = Coding Standard. 

Note: The terms driver and non-driver are used below. The driver is the partner who 
has control of the recording medium (ex: paper, computer keyboard) and is recording 
the design or implementing code or fixing code. The non-driver is the other partner who 
is actively observing the driver -- identifying defects, giving suggestions, etc. When a 
partner is working alone, he or she is considered the driver, and no one is filling the 
non-driver role. 
1 Design • = Review the requirements and produce a design to meet 

them via discussions between partners.  
• = The driver records the design in pre-determined for-

mat/on pre-determined medium.  
• = The non-driver observes to ensure the design is being 

recorded efficiently and effectively meets the require-
ments.  The non-driver identifies defects and gives 
suggestions for alternative designs.  

• = Periodically, switch drivers.  
• = Record design time in the Time Recording Log 

2 Code • = Implement the design following the Coding Standard.  
• = The driver implements the design by typing code via 

the keyboard.  
• = The non-driver is observes to ensure the code properly 

implements the design, and conforms to the Coding 
Standard, identifying defects whenever necessary and 
giving suggestions for alternative implementations.  

• = Periodically, switch drivers.  
• = Record any requirements or design defects in the De-

fect Recording Log  
• = Record coding time in the Time Recording Log 

3 Compile • = Compile the program until error-free.  
• = Both partners identify and discuss all defects found and 

the possible implications of these defects elsewhere in 
the code.  

• = The driver implements the code changes by fixing code 
via the keyboard.  
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• = The non-driver observes to ensure the fix is properly 
implemented, identifying erroneous fix implementa-
tions.  

• = Periodically, switch drivers.  
• = Record all defects found in Defect Recording Log  
• = Record compile time (until program compiles error-

free) in the Time Recording Log 
4 Test • = Test until all tests cases run without error  

• = Both partners identify and discuss all defects found and 
the possible implications of these defects elsewhere in 
the code.  

• = The driver implements the code changes by fixing code 
via the keyboard.  

• = The non-driver observes to ensure the fix is properly 
implemented, identifying erroneous fix implementa-
tions.  

• = Periodically, switch drivers.  
• = Record defects in the Defect Recording Log  
• = Record test time (until all test cases run error-free) in 

the Time Recording Log 
 Exit Criteria • = A thoroughly tested program that conforms to the 

Coding Standard  
• = Completed Defect Recording Log  
• = Completed Time Recording Log 
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Table 18:  CSP0.1 Postmortem Script 

Phase 
Number 

Purpose To guide the CSP postmortem process 

 Entry criteria • = Problem description and requirements statement. 
• = Project Plan Summary with planned program size and 

planned development time.  
• = Completed Time Recording Log  
• = Completed Defect Recording Log  
• = A tested and running program that conforms to the 

Coding Standard 
1 Defects In-

jected 
• = Determine from the Defect Recording Log the number 

of defects injected in each phase.  
• = Enter this number under Defects Injected -- Actual on 

the Project Plan Summary 
2 Defects Re-

moved 
• = Determine from the Defect Recording Log the number 

of defects removed in each phase.  
• = Enter this number under Defects Removed -- Actual on 

the Project Plan Summary 
3 Size • = Count the LOC in the completed program.  

• = Determine the base, reused, deleted, modified, added, 
total, total new and changed, and new reused LOC  

• = Enter these data on the Project Plan Summary. 
4 Time • = Review the completed Time Recording Log  

• = Enter the total time spent in each phase under Actual 
on the Project Plan Summary 

 Exit Criteria • = A fully tested program that conforms to the Coding 
Standard   

• = Completed Project Plan Summary Form  
• = Completed PIP form describing process problems, 

improvement suggestions, and what went well.  
• = Completed Defect Recording Log and Time Recording 

Log 
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Table 19:  CSP0.1 and CSP 1.0 Project Plan Summary 

Student  Date  
Program  Program #  
Instructor  Language  

 
Program 
Size (LOC) 

 Plan  Actual  To Date     

Base(B)           
  Deleted(D)           
  Modified(M)           
  Added(A) 
  (T - B + D - R) 

          

  Reused(R)           
Total New 
and 
Changed(N) 
(A + M) 

          

Total LOC (T)           
Total New 
Reused 

          

           
Time in 
Phase 
(min.) 

     Plan  Total 
Actual 

 To Date 
%   

 Individual  Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
  Postmortem      
      Total      

      
      

Defects In-
jected 

  Actual    Individual Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
      Total       
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Defects 
Removed 

 Actual  Individual Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
      Total       
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Table 20:  CSP0.1 and CSP 1.0 Project Plan Summary Instructions 

Purpose This form holds the estimated and actual project data in a conven-
ient and readily retrievable form 

Header Enter the following: 
• = Your name and today’s date. 
• = The program name and number.  
• = The instructor’s name.  
• = The language you used to write the program.  

Program Size 
(LOC) 

Prior to Development: 
• = If you are modifying or enhancing an existing program, count that 

program’s LOC and enter it under Base – Actual 
• = Using your best judgment, estimate the new and changed LOC you 

expect to develop 
After Development: 
• = If the base LOC (B) has changed, enter the new value 
• = Measure the total program size and enter it under Total LOC (T) – 

Actual 
• = Review your source code and determine the actual LOC that were 

deleted (D), modified (M), or reused (R).  Enter these in the appro-
priate Actual row. 

• = Calculate the LOC of added code as A = T – B + D – R 
• = Calculate the total new and changed LOC as N = A + M. 

Time in Phase • = Under Plan, enter your original estimate of the total development 
time and the time required by phase.  

• = Under Actual, enter the total actual time in minutes spent in each 
development phase (should be the sum of the Individual and Col-
laborative time). 

• = Under Individual, enter the total actual time spent by any partner in-
dividually 

• = Under Collaborative, enter the total actual time spent the partners 
collaboratively 

• = Under To Date %, enter the percentage of Total time (versus your 
plan) in each phase. 

Defects In-
jected 

• = Under Actual, enter the number of defects injected in each phase 
(should be the sum of the Individual and Collaborative defects). 

• = Under Individual, enter the total defects time injected by phase when 
a partner was working individually 

• = Under Individual, enter the total defects time injected by phase when 
the partners were working collaboratively 

Defects Re-
moved 

• = Under Actual, enter the number of defects removed in each phase 
(should be the sum of the Individual and Collaborative defects). 
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• = Under Individual, enter the total defects time removed by phase 
when a partner was working individually 

• = Under Individual, enter the total defects time removed by phase 
when the partners were working collaboratively 
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Table 21:  Process Improvement Proposal (PIP)  

Student  Date  
Instructor  Program #  
Process CSP Level     
PIP Number  Problem Description and Proposed Solution 
  
  
  
  
  
  
  
  
  
  
Describe what worked about your process during this program.   
 
 
 
 
 
 
 
 
 
 
Notes and Comments 
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Table 22:  Process Improvement Proposal (PIP) Instructions 

Purpose • = To provide a way to record process problems and improvement 
ideas 

• = To provide an orderly record of your process improvement ideas for 
use in later process improvement 

• = To provide an orderly record of what you found beneficial during 
this program cycle so these things can be continued, as appropriate, 
in future cycles 

General Use the PIP form as follows: 
• = To record process improvement ideas as they occur to you 
• = To record beneficial process steps as you complete them 
• = To record lessons learned and unusual conditions 
Keep PIP forms on hand while using the CSP 
• = Record process problems even without proposed solutions. 
• = Retain the PIPs for use in future process improvements 

Header • = Enter your name, the date, the instructor’s name, and the program 
number or other project designation. 

• = Enter the name of the process you are using (such as CSP0.1) 
Problem and 
Proposed So-
lution 

Number the problems in each form in the left hand column.  Start with 
number 1 on each PIP. 
Describe the problem as clearly as possible: 

• = The difficulty encountered 
• = The impact on the product, the process, and you. 
• = Describe the proposed process improvement as explicitly as pos-

sible. 
• = Where possible, reference the specific process element and the 

words or entries to be changed. 
• = If you feel a proposed improvement is particularly important, 

describe its priority and explain why. 
What 
Worked 

Briefly describe process steps that proved beneficial to the project out-
come.  Be sure to describe when a process step prescribed in the CSP 
was altered, which yielded beneficial results. 

Notes and 
Comments 

For each product, complete at least one PIP form with overall comments 
about the process: 

• = Record the process lessons learned. 
• = Note any conditions you need to remember to later determine 

why the process worked particularly well or poorly. 
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Table 23:  C++ Coding Standard 

Purpose To guide the development of C++ programs 
Program 
Headers 

// 
*********************************************************
* 
 //  Program Assignment:  the Program Number 
 //  Name(s):  your names 
 //  Date:   the date the program development STARTED            
 //  Description:  a short description of the program function                 
 //  ******************************************************
** 

Identifiers Use descriptive names for all variables, function names, constants, and 
other identifiers.  Avoid abbreviations or single-letter variables 

Identifier Ex-
ample 

int number_of_students;          // This is GOOD 
float x4, j, ftave;                      // These are BAD 

Comments • = Document the code so that the reader can understand its operation.  
The more self-documenting your code is via meaningful variable 
names and proper spacing, the less comments will be needed to un-
derstand its purpose  

• = Comments should explain both the purpose and behavior of the 
code, particularly at the beginning of function declarations in the 
header file.  

• = Comment variable declarations to indicate their purpose.  
 

Good Com-
ment 

if (record_count) > limit)     // have all the records been processed? 

Useless Com-
ment 

if (record_count) > limit)     //  check if record_count greater than limit 

Blank Spaces • = Write programs with sufficient spacing so that they do not appear 
crowded.  

• = Separate every program construct with at least one space.  
 

Indenting • = Indent every level of brace from the previous one.  
• = Open and close braces should be on lines by themselves and 

aligned with each other.  
Indenting Ex-
ample 

while (miss_distance > threshold) 
{ 
 success_code = move_robot(target_location); 
 if (success_code == MOVE_FAILED) 
    { 
     cout << "The robot move has failed." << endl; 
    } 
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} 
Capitalization • = Capitalize all #define's  

• = Lowercase all other identifers and reserved words.  
• = Messages being output to the user can be mixed-case as to make a 

clean user presentation.   
 

Capitalization 
Example 

#define DEFAULT-NUMBER-OF-STUDENTS 15 
int class_size = DEFAULT-NUMBER-OF-STUDENTS  

Class Declara-
tion and 
Definition 

• = All class data members must be private.  
• = Public "getter" and "setter" accessor methods should be imple-

mented to allow access to private data members, as appropriate. 
Instance Vari-
ables 

• = There is a unique copy of each ariable for each instance of a class.  
Since every instance has its own copy, append "my" to the variable 
name.   

• = Variable names should indicate the purpose of the variable.  
• = The first letter of every word (except "my") is capitalized.  
• = Examples:  myAccount, myLastName, myMiddleInitial  

Static/Class 
Variables 

• = There is one copy of static variables that is shared by all instances 
of a class.  Append "our" to the beginning of each static variable 
name to remind yourself every time they are used that they are 
shared.  

• = Variable names should indicate the purpose of the variable.  
• = The first letter of every word (except "our") is capitalized.  
• = Examples:  ourNumberOfInstances, ourTotalCost, ourFileHandle  
 

Class Declara-
tion Example 

class Student  
{ 
public: 
   string getFirstName(); 
   void setFirstName(string name); 
   string getLastName(); 
   void setLastName(string name); 
   int  getNumStudents(); 
   void setNumStudents(int number);   
private: 
    string myFirstName; 
    string myLastName; 
    static int ourNumStudents; 
}; 
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Table 24:  CSP1.0 Process Script 

 Phase 
Number 

Purpose To guide you in collaboratively developing module-level 
programs 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty Time and Defect Recording Logs  
• = Stop watch (optional) 

1 Planning • = Produce or obtain a requirement statement  
• = Analyze the requirements statement via the develop-

ment of a thorough set of use cases.   
• = Estimate the total new and changed LOC required  
• = Estimate the required development time of both part-

ners  
• = Enter the plan data in the Project Plan Summary form  
• = Record the time spent in the Time Recording Log for 

Planning 
2 Development • = Perform a CRC card exercise in order to develop a 

preliminary high-level design. 
• = Design the program  
Perform the steps below iteratively: 
• = Implement the design  
• = Compile the program and fix and log all defects found  
• = Test the program and fix and log all defects found  
• = Record the time spent in these activities in the Time 

Recording Log in the appropriate phase 
3 Postmortem • = Complete the Project Plan Summary form with actual 

time, defect, and size data 
 Exit Criteria • = A thoroughly tested program  

• = Completed Project Plan Summary with estimated and 
actual data  

• = Completed Process Improvement Proposal (PIP) form  
• = Completed Defect and Time Recording Logs 
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Table 25:  CSP1.0 and CSP 1.1 Planning Script 

Phase 
Number 

Purpose To guide the CSP planning process 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty Time Recording Log 

1 Program Re-
quirements 

• = Produce or obtain a requirements statement for the pro-
gram  

• = Ensure the requirements statement is clear and unambi-
guous  

• = Analyze the program requirements by producing a 
comprehensive set of Use Cases for the set of re-
quirements.  Complete the Use Case Flow-of-Events 
template for each use case.  

• = Resolve any questions 
2 Size Estimate • = Make your best estimate of the total new and changed 

LOC required to develop this program 
3 Resource Es-

timate 
• = Make your best estimate of the time (for both partners) 

required to develop this program 

• = Make your best estimate of the total new and changed 
LOC required to develop this program 

 Exit Criteria • = A documented requirements statement  
• = Completed Use Case Flow-of-Events templates for 

each use case. 
• = Estimated development time and program size data en-

tered in the Project Plan Summary  
• = Actual time spent planning entered in the Time Re-

cording Log 
 

 



 

 

132

Table 26:  CSP1.0 Development Script 

Phase 
Number 

Purpose To guide the development of small programs 

 Entry criteria • = Requirements statement  
• = Project Plan Summary with planning completed  
• = Time and Defect Recording Logs with planning com-

pleted  
• = Coding Standard. 

Note: The terms driver and non-driver are used below. The driver is the partner who 
has control of the recording medium (ex: paper, computer keyboard) and is recording 
the design or implementing code or fixing code. The non-driver is the other partner who 
is actively observing the driver -- identifying defects, giving suggestions, etc. When a 
partner is working alone, he or she is considered the driver, and no one is filling the 
non-driver role. 
1 Design • = Review the requirements and  

• = Produce a design to meet the requirements by perform-
ing a CRC card exercise with partners and/or 
members of the product team.   

• = Include in your design a class diagram that lists the 
properties and methods of each class and demon-
strates which other classes the class is dependent 
upon for services/information.   

• = The driver records the design in pre-determined for-
mat/on pre-determined medium.  

• = The non-driver observes to ensure the design is being 
recorded efficiently and effectively meets the require-
ments.  The non-driver identifies defects and gives 
suggestions for alternative designs.  

• = Periodically, switch drivers.  
• = Record design time in the Time Recording Log 

Perform Code, Compile and Test (below) iteratively. Choose an element of the design 
and code it, compile it and test it before choosing another element of the design to 
implement. 
2 Code • = Implement the design following the Coding Standard.  

• = The driver implements the design by typing code via 
the keyboard.  

• = The non-driver is observes to ensure the code properly 
implements the design, and conforms to the Coding 
Standard, identifying defects whenever necessary and 
giving suggestions for alternative implementations.  

• = Periodically, switch drivers.  
• Record any requirements or design defects in the De-
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fect Recording Log  
• = Record coding time in the Time Recording Log 

3 Compile • = Compile the program until error-free.  
• = Both partners identify and discuss all defects found and 

the possible implications of these defects elsewhere in 
the code.  

• = The driver implements the code changes by fixing code 
via the keyboard.  

• = The non-driver observes to ensure the fix is properly 
implemented, identifying erroneous fix implementa-
tions.  

• = Periodically, switch drivers.  
• = Record all defects found in Defect Recording Log  
• = Record compile time (until program compiles error-

free) in the Time Recording Log 
4 Test • = Test until all tests cases run without error  

• = Both partners identify and discuss all defects found and 
the possible implications of these defects elsewhere in 
the code.  

• = The driver implements the code changes by fixing code 
via the keyboard.  

• = The non-driver observes to ensure the fix is properly 
implemented, identifying erroneous fix implementa-
tions.  

• = Periodically, switch drivers.  
• = Record defects in the Defect Recording Log  
• = Record test time (until all test cases run error-free) in 

the Time Recording Log 
 Exit Criteria • = A thoroughly tested program that conforms to the Cod-

ing Standard  
• = Completed Defect Recording Log  
• = Completed Time Recording Log 

 



 

 

134

Table 27:  CSP1.0 Postmortem Script 

Phase 
Number 

Purpose To guide the CSP postmortem process 

 Entry criteria • = Problem description and requirements statement. 
• = Project Plan Summary with planned program size and 

planned development time.  
• = Completed Time Recording Log  
• = Completed Defect Recording Log  
• = A tested and running program that conforms to the 

Coding Standard 
1 Defects In-

jected 
• = Determine from the Defect Recording Log the number 

of defects injected in each phase.  
• = Enter this number under Defects Injected -- Actual on 

the Project Plan Summary 
2 Defects Re-

moved 
• = Determine from the Defect Recording Log the number 

of defects removed in each phase.  
• = Enter this number under Defects Removed -- Actual on 

the Project Plan Summary 
3 Size • = Count the LOC in the completed program.  

• = Determine the base, reused, deleted, modified, added, 
total, total new and changed, and new reused LOC  

• = Enter these data on the Project Plan Summary. 
4 Time • = Review the completed Time Recording Log  

• = Enter the total time spent in each phase under Actual 
on the Project Plan Summary 

 Exit Criteria • = A fully tested program that conforms to the Coding 
Standard   

• = Completed Use Case Flow-of-Events templates  
• = Completed Project Plan Summary Form  
• = Completed PIP form describing process problems, im-

provement suggestions, and what went well.  
• = Completed Defect Recording Log and Time Recording 

Log 
 



 

 

135

Table 28:  Use Case Flow of Event Template 

Student  Date  
Instructor  Program #  
X Flow of Events for the <name> Use Case 
X.1  Preconditions 
  
  
  
  
X.2 Main Flow 
  
  
  
  
  
  
  
  
  
  
X.3 Sub-flows (if applicable) 
  
  
  
  
  
  
  
  
X.4 Alternative Flows (if applicable) 
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Table 29:  Use Case Flow of Events Template Instructions 

 Purpose • = To systematically develop a description of the events needed to ac-
complish the required behavior of the use case. 

• = This flow of events should enumerate what the system should do, 
not how the system should do it.   

• = The use case should be written in the language of the domain so that 
it can be easily read by a customer. 

Header • = Enter your name, the date, the instructor’s name, and the program 
number or other project designation. 

Flow of 
Events Num-
ber and 
Name 

• = Assign each use case has its own number, starting with number 1.  
Place this number in the Flow of Events everywhere an X appears in 
the template.   

• = Assign each use case a short name, which is indicative of the pur-
pose of the use case. 

Example:  1.0 Flow of Events for the Customer Transaction Use Case 
Preconditions • = Enumerate any data that is needed by the use case 

• = Enumerate any flows or subflows that must execute in another use 
case before this use case can begin. 

Main Flow • = Enumerate the normal sequence of events or the basic start-to-finish 
path an actor will follow under normal conditions. 

Sub-flows • = Further describe/breakdown the sequence of events in the Main 
Flow. 

• = Only break the Main Flow into Sub-flows if the complexity war-
rants the breakdown.  Resist temptation to develop pseudocode of 
the implementation in the subflow. 

Alternative 
Flows 

• = Enumerate infrequently used paths through a scenario, exceptions, 
and error conditions. 
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Table 30:  CSP1.1 Process Script 

 Phase 
Number 

Purpose To guide you in collaboratively developing module-level 
programs 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty Time and Defect Recording Logs  
• = Stop watch (optional) 

1 Planning • = Produce or obtain a requirement statement  
• = Analyze the requirements statement via the develop-

ment of a thorough set of use cases.   
• = Estimate the total new and changed LOC required  
• = Estimate the required development time of both part-

ners  
• = Enter the plan data in the Project Plan Summary form  
• = Record the time spent in the Time Recording Log for 

Planning 
2 Development • = Perform a CRC card exercise in order to develop a pre-

liminary high-level design. 
• = Design the program  
• = Review the design and fix and log all defects found. 
Perform the steps below iteratively: 

• = Implement the design  
• = Review the code and fix and log all defects found. 
• = Compile the program and fix and log all defects found  
• = Test the program and fix and log all defects found  
• = Record the time spent in these activities in the Time 

Recording Log in the appropriate phase 
3 Postmortem • = Complete the Project Plan Summary form with actual 

time, defect, and size data 
 Exit Criteria • = A thoroughly tested program  

• = Completed Project Plan Summary with estimated and 
actual data  

• = Completed Design Review and Code Review Check-
lists. 

• = Completed Process Improvement Proposal (PIP) form  
• = Completed Defect and Time Recording Logs 
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Table 31:  CSP1.1 and CSP2.0 Development Script 

Phase 
Number 

Purpose To guide the development of small programs 

 Entry criteria • = Requirements statement  
• = Project Plan Summary with planning completed  
• = Time and Defect Recording Logs with planning com-

pleted  
• = Coding Standard. 

Note: The terms driver and non-driver are used below. The driver is the partner who 
has control of the recording medium (ex: paper, computer keyboard) and is recording 
the design or implementing code or fixing code. The non-driver is the other partner who 
is actively observing the driver -- identifying defects, giving suggestions, etc. When a 
partner is working alone, he or she is considered the driver, and no one is filling the 
non-driver role. 
1 Design • = Review the requirements and  

• = Produce a design to meet the requirements by perform-
ing a CRC card exercise with partners and/or members 
of the product team.   

• = Include in your design a class diagram that lists the 
properties and methods of each class and demonstrates 
which other classes the class is dependent upon for ser-
vices/information.   

• = The driver records the design in pre-determined for-
mat/on pre-determined medium.  

• = The non-driver observes to ensure the design is being 
recorded efficiently and effectively meets the require-
ments.  The non-driver identifies defects and gives 
suggestions for alternative designs.  

• = Periodically, switch drivers.  
• = Record design time in the Time Recording Log 

2 Design Re-
view  

• = Follow the Design Review Checklist and review the 
design.  

• = Fix all defects found.  
• = Record defects in Defect Recording Log  
• = Record Design Review time in Time Recording Log 

3 Prepare Test 
Cases 

• = Prepare a preliminary set of test cases using the Test 
Case Template.  The test case should validate that all 
requirements have been properly implemented and 
possible error conditions have been properly han-
dled.  (Details that are not yet know can be completed 
after code development.)  Use the Unit Test Checklist 
to ensure test coverage.  
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• = Fix any design defects surfaced by writing the test 
cases.  Record these defects in the Defect Recording 
Log.  

• = Record test development time as Testing time in the 
Time Recording Log. 

Perform Code, Compile and Test (below) iteratively. Choose an element of the design 
and code it, compile it and test it before choosing another element of the design to im-
plement. 
4 Code • = Implement the design following the Coding Standard.  

• = The driver implements the design by typing code via 
the keyboard.  

• = The non-driver is observes to ensure the code properly 
implements the design, and conforms to the Coding 
Standard, identifying defects whenever necessary and 
giving suggestions for alternative implementations.  

• = Periodically, switch drivers.  
• = Record any requirements or design defects in the De-

fect Recording Log  
• = Record coding time in the Time Recording Log 

5 Code Review  • = Using the Code Review Checklist and review the code. 
• = Fix all defects found.  
• = Record defects in the Defect Recording Log  
• = Record Code Review time in Time Recording Log. 

6 Compile • = Compile the program until error-free.  
• = Both partners identify and discuss all defects found and 

the possible implications of these defects elsewhere in 
the code.  

• = The driver implements the code changes by fixing code 
via the keyboard.  

• = The non-driver observes to ensure the fix is properly 
implemented, identifying erroneous fix implementa-
tions.  

• = Periodically, switch drivers.  
• = Record all defects found in Defect Recording Log  
• = Record compile time (until program compiles error-

free) in the Time Recording Log 
7 Test • = Develop additional test cases using the Test Case 

Template.  Complete any additional, new information on 
previously developed test cases.  Use the Unit Test Check-
list to ensure test coverage.  
• = Add new test cases to an ever-enlarging set of regres-
sion tests. 
• = Test until all tests cases (including all regression 

tests) run without error  
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• = Record the results running test case on the Test Case 
Template. 

• = Both partners identify and discuss all defects found and 
the possible implications of these defects elsewhere in 
the code.  

• = The driver implements the code changes by fixing code 
via the keyboard.  

• = The non-driver observes to ensure the fix is properly 
implemented, identifying erroneous fix implementa-
tions.  

• = Periodically, switch drivers.  
• = Record defects in the Defect Recording Log  
• = Record test time (until all test cases run error-free) in 

the Time Recording Log 
 Exit Criteria • = A thoroughly tested program that conforms to the Cod-

ing Standard  
• = Completed Design Review and Code Review Check-

lists.  
• = Completed Unit Test Checklists 
• = Completed Defect Recording Log  
• = Completed Time Recording Log 
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Table 32:  CSP1.1 and CSP2.0 Postmortem Script 

Phase 
Number 

Purpose To guide the CSP postmortem process 

 Entry criteria • = Problem description and requirements statement 
• = Project Plan Summary with planned program size and 

planned development time 
• = Completed Design Review and Code Review Check-

lists 
• = Completed Unit Test Checklists 
• = Completed Time Recording Log  
• = Completed Defect Recording Log  
• = A tested and running program that conforms to the 

Coding Standard 
1 Defects In-

jected 
• = Determine from the Defect Recording Log the number 

of defects injected in each phase.  
• = Enter this number under Defects Injected -- Actual on 

the Project Plan Summary 
2 Defects Re-

moved 
• = Determine from the Defect Recording Log the number 

of defects removed in each phase.  
• = Enter this number under Defects Removed -- Actual on 

the Project Plan Summary 
3 Size • = Count the LOC in the completed program.  

• = Determine the base, reused, deleted, modified, added, 
total, total new and changed, and new reused LOC  

• = Enter these data on the Project Plan Summary. 
4 Time • = Review the completed Time Recording Log  

• = Enter the total time spent in each phase under Actual 
on the Project Plan Summary 

 Exit Criteria • = A fully tested program that conforms to the Coding 
Standard   

• = Completed Use Case Flow-of-Events templates  
• = Completed Project Plan Summary Form  
• = Completed PIP form describing process problems, im-

provement suggestions, and what went well.  
• = Completed Defect Recording Log and Time Recording 

Log 
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Table 33:  CSP1.1 Project Plan Summary 

Student  Date  
Program  Program #  
Instructor  Language  

 
Summary    This 

Program 
 Programs 

to Date 
    

Defects/ 
KLOC 

          

Yield %           
% Appraisal 
COQ 

          

% Failure 
COQ 

          

COQ A/F 
Ratio 

          

           
Program 
Size (LOC) 

 Plan  Actual  To Date     

Base(B)           
  Deleted(D)           
  Modified(M)           
  Added(A) 
  (T - B + D - R) 

          

  Reused(R)           
Total New 
and 
Changed(N) 
(A + M) 

          

Total LOC (T)           
Total New 
Reused 

          

           
Time in 
Phase 
(min.) 

     Plan  Total 
Actual 

 To Date 
%   

 Individual  Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
  Postmortem      
      Total      
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Defects In-
jected 

  Actual    Individual Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
      Total       

      
Defects 
Removed 

 Actual  Individual Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
      Total       
      
Defect Re-
moval 
Efficiency 
(Defects/Hour) 

    This Pro-
gram 

 Programs to 
Date 

Design Re-
view 

     

Code Re-
view 

     

Compile      
Test      
      
Defect Re-
moval 
Leverage 
(vs Test) 

     

Design Re-
view 

     

Code Re-
view 

     

Compile      
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Table 34:  CSP1.1 Project Plan Summary Instructions 

Purpose This form holds the estimated and actual project data in a conven-
ient and readily retrievable form 

Header Enter the following: 
• = Your name and today’s date 
• = The program name and number 
• = The instructor’s name 
• = The language you used to write the program 

Summary • = Enter the actual and to date defect data 
• = Enter the actual and to date yield 
• = Enter the actual and to date Appraisal Cost of Quality:  the per-

centage of development time spent in compile and test 
• = Enter the actual and to date Failure Cost Of Quality: the percent-

age of development time spent in compile and test 
• = Enter the A/F Ratio:  the ratio of Appraisal COQ divided by Fail-

ure COQ  
Program Size 
(LOC) 

Prior to Development: 
• = If you are modifying or enhancing an existing program, count that 

program’s LOC and enter it under Base – Actual 
• = Using your best judgment, estimate the new and changed LOC you 

expect to develop 
After Development: 
• = If the base LOC (B) has changed, enter the new value 
• = Measure the total program size and enter it under Total LOC (T) – 

Actual 
• = Review your source code and determine the actual LOC that were 

deleted (D), modified (M), or reused (R).  Enter these in the appro-
priate Actual row. 

• = Calculate the LOC of added code as A = T – B + D – R 
• = Calculate the total new and changed LOC as N = A + M. 

Time in Phase • = Under Plan, enter your original estimate of the total development 
time and the time required by phase.  

• = Under Actual, enter the total actual time in minutes spent in each 
development phase (should be the sum of the Individual and Col-
laborative time). 

• = Under Individual, enter the total actual time spent by any partner in-
dividually 

• = Under Collaborative, enter the total actual time spent the partners 
collaboratively 

• = Under To Date %, enter the percentage of Total time (versus your 
plan) in each phase. 
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Defects In-
jected 

• = Under Actual, enter the number of defects injected in each phase 
(should be the sum of the Individual and Collaborative defects). 

• = Under Individual, enter the total defects time injected by phase when 
a partner was working individually 

• = Under Individual, enter the total defects time injected by phase when 
the partners were working collaboratively 

Defects Re-
moved 

• = Under Actual, enter the number of defects removed in each phase 
(should be the sum of the Individual and Collaborative defects). 

• = Under Individual, enter the total defects time removed by phase 
when a partner was working individually 

• = Under Individual, enter the total defects time removed by phase 
when the partners were working collaboratively 

Defect Re-
moval 
Efficiency 

• = Under This Program, enter the actual efficiencies (defects/hour) 
achieved for this program 

• = Under Programs To Date, enter the actual efficiencies (de-
fects/hour) achieved for all programs to date 

Defect Re-
moval 
Leverage 

• = Under This Program, enter the actual leverage (defects/hour of 
this phase divided by defects/hour test) achieved for this program 

• = Under Programs To Date, enter the actual leverage (defects/hour 
of this phase divided by defects/hour test) achieved for all pro-
grams to date 
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Table 35:  Individual Code Review Checklist 

Purpose To guide you in conducting an effective code review 
General • = As you complete each review step, check off that item. 

• = Complete the checklist for one program unit before you start to the 
review the next. 

Complete Verify that the code is a complete and correct implementation of the 
design. 

Standards Ensure the code conforms to the C++ coding standards  
Include Verify that all includes are complete 
Line-by-line 
check 

Check every line of code for: 
• = instruction syntax 
• = proper punctuation 

Initialization Check variable and parameter initialization: 
• = At program initiation  
• = At start of every loop 
• = At function entry 

Calls Check function call formats: 
• = Pointers 
• = Parameters 
• = Arrays 
• = Use of & 

{} pairs Ensure the {} are proper and matched 
Logic 
Operators 

• = Verify the proper use of ==, =, || and so on 
• = Check every logic test for proper ( ) 

Classes and 
Functions 

• = Class declarations end with ; 
• = Ensure all functions are defined before they are used  or properly 

defined in a .h file 
• = The scope resolution operator :: is used properly in class functions 

definitions.   
Names Check name spelling and use: 

• = Is it consistent? 
• = Is it within the declared scope? 
• = Do all structures and classes use '.' or '->' references properly? 

Pointers Check that: 
• = pointers are initialized to NULL 
• = pointers are declared only after new 
• = new pointers are always deleted after use 

Output Format Check the output format: 
• = Line stepping is proper 
• = Spacing is proper 

File Open and Verify that all files are: 
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Close • = properly declared 
• = properly opened 
• = properly closed 
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Table 36:  Collaborative Code Review Checklist 

Purpose To guide you in conducting an effective code review 
General • = As you complete each review step, check off that item. 

• = Complete the checklist for one program unit before you start to the 
review the next. 

Complete Verify that the code is a complete and correct implementation of the 
design. 

Standards Ensure the code conforms to the C++ coding standards  
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Table 37:  Individual Design Review Checklist 

Purpose To guide you through an effective Design Review 
General • = As you complete each review step, check off that item  

• = Complete the checklist for one program unit before you start to re-
view the next 

Completeness Ensure that the requirements and specifications are completely and cor-
rectly covered by the design: 
• = All specified outputs are produced 
• = All needed inputs are furnished 
• = All required includes are stated  

Class Design • = All data members are private with public getters/setters where nec-
essary and prudent 

• = Data Connectedness: Can you traverse the network of collabora-
tions between the classes to gather all the information you need to 
deliver the services based on a representative set of scenarios?  

• = Abstraction: Does the name of each class convey its abstractions?  
Does the abstraction have a natural meaning and use in the do-
main?  

• = Responsibility Alignment: Do the name, main responsibility state-
ment data and functions in each class align?  

Logic • = All program sequences are in the proper order 
• = Recursion unwinds properly and terminates  
• = All loops are properly initiated, incremented and terminated  

Modularity • = Ensure the proper use of functions to modularize program steps. 
• = Ease of reading 
• = Repetitive steps  

Special Cases Check all special cases: 
• = Ensure proper operation with empty, full, minimum, maximum, 

negative, and zero values for all variables  
• = Protect against out-of-limits, overflow, underflow conditions 
• = Ensure “impossible” conditions are absolutely impossible  
• = Handle all incorrect input conditions  

 



 

 

150

Table 38:  Collaborative Design Review Checklist 

Purpose To guide you through an effective Design Review 
General • = As you complete each review step, check off that item  

• = Complete the checklist for one program unit before you start to re-
view the next 

Completeness Ensure that the requirements and specifications are completely and cor-
rectly covered by the design: 
• = All specified outputs are produced 
• = All needed inputs are furnished 
• = All required includes are stated  

Class Design • = All data members are private with public getters/setters where nec-
essary and prudent 

• = Data Connectedness: Can you traverse the network of collabora-
tions between the classes to gather all the information you need to 
deliver the services based on a representative set of scenarios?  

• = Abstraction: Does the name of each class convey its abstractions?  
Does the abstraction have a natural meaning and use in the do-
main?  

• = Responsibility Alignment: Do the name, main responsibility state-
ment data and functions in each class align?  

Special Cases Check all special cases: 
• = Ensure proper operation with empty, full, minimum, maximum, 

negative, and zero values for all variables  
• = Protect against out-of-limits, overflow, underflow conditions 
• = Ensure “impossible” conditions are absolutely impossible  
• = Handle all incorrect input conditions  
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Table 39:  Test Case Template 

Student  Date  
Instructor  Program #  
Test Case 
Number 

Test Objective Test Description Expected Re-
sults 

Actual Results 
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Table 40:  Test Case Template Instructions 

 Purpose • = To systematically document test cases necessary to thoroughly vali-
date the desired behaviors of the program 

Header • = Enter your name, the date, the instructor’s name, and the program 
number or other project designation. 

Test Number Identify each test case with a unique number. 
Test Objec-
tive 

• = Briefly describe the objective for running the test case 
• = Example:  linear regression with normal input 

Test Descrip-
tion 

• = Describe each test’s data and procedures in sufficient detail to per-
mit it to be run or re-run by someone other than yourself 

• = At this time, it is not acceptable to write, “run linear regression with 
normal input.”  You must indicate specific function calls or data that 
should be input into the program to force the conditions you want to 
test. 

Expected Re-
sults 

• = List the exact results the test should produce if it runs properly. 

Actual Re-
sults 

• = List the results that were actually produced when the test is run. 
• = When the same test is run multiple times while fixing multiple de-

fects, note the results of each test.   
• = Example: 

o Run 1: 
o Run 2: 
o Run 3: 
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Table 41:  Test Coverage Checklist 

Purpose To guide you in reviewing the completeness of your test cases 
Black Box Testing 
Complete Does each requirement have it’s own test case? 
Equivalence 
Class Partition-
ing  

 

Have you developed an equivalence class representing the set of valid 
or invalid input conditions for each test case: 
• = If the input for the test case:  

• = can be a range of values, try one valid input value and two dif-
ferent invalid input values 

• = must be a specific value,  try the valid input value and two dif-
ferent invalid input values  

• = must be any of a set of values, try one valid value and one in-
valid value  

• = is a boolean, try both true and false  
Boundary 
Value Analysis  

Have you performed boundary analysis on the input conditions for 
each test case 
If the input for the test case:  
• = can be a range of values from a to b, try a, b, a-1, and b+1 (if inte-

gers -- otherwise slightly less than a an slightly more than b) 
• = must be any of a set of values, test with the min of the set, the max 

of the set, the min-1 and the max+1  
• = is a boolean, try both true and false  

Scenario Test-
ing  

Do you have test cases that run through a representative set of cus-
tomer scenarios?     

Data Do you have test cases that check for the wrong kind of data -- for ex-
ample a negative price?  

White Box Testing 
Basis Path 
Testing 

Has each line of code been executed with at least one test case?  
• = Draw the flowgraph of a module.  
• = Compute the minimum number of tests necessary to exercise 

each line of code by calculating the cyclomatic complexity 
V(G) using any one of the formulas below  

o V(G) = the number of regions in the graph OR  
o V(G) = E - N + 2  (where E= number of edges and N = 

number of nodes) OR  
o V(G) = P + 1 (where P = number of predicate nodes) 

Ensure test cases are written to execute each line of code 
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Loop Testing  Where n is the maximum number of allowable passes through the 
loop, write test cases to: 
• = Skip the loop entirely  
• = Make only one pass through the loop  
• = Make two passes through the loop  
• = Make m passes through the loop, where m < n  
• = Make n-1, n, and n+1 passes through the loop 

File Interface Have you checked for:  
• = proper file attributes 
• = opening and closing files 
• = eof handling 

Error Handling  Have you tried error handling routines?   
• = Are error descriptions meaningful?  
• = Do error descriptions match the error conditions?  
• = Are there any spelling mistakes in messages?  

Object Oriented 
Testing 

If you have a class hierarchy, have you tested each of the inherited 
methods in the context of each inherited class?   

Misc • = Have you exercised any possible underflow or overflow condi-
tions? 

• = Has a list of common errors been used to write test cases to detect 
errors that have occurred frequently in the past 

• = Do the test cases make hand checks easy?  
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Table 42:  CSP2.0 Process Script 

 Phase 
Number 

Purpose To guide you in collaboratively developing module-level 
programs 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty PROBE Size Estimating Template. 
• = Historical estimate and actual size and time data. 
• = Empty Time and Defect Recording Logs  
• = Stop watch (optional) 

1 Planning • = Produce or obtain a requirement statement  
• = Analyze the requirements statement via the develop-

ment of a thorough set of use cases.   
• = Use the PROBE method to estimate the total new and 

changed LOC required  
• = Use the PROBE method to estimate the required de-

velopment time of both partners  
• = Enter the plan data in the Project Plan Summary form  
• = Record the time spent in the Time Recording Log for 

Planning 
2 Development • = Perform a CRC card exercise in order to develop a pre-

liminary high-level design. 
• = Design the program  
• = Review the design and fix and log all defects found. 
Perform the steps below iteratively: 

• = Implement the design  
• = Review the code and fix and log all defects found. 
• = Compile the program and fix and log all defects found  
• = Test the program and fix and log all defects found  
• = Record the time spent in these activities in the Time 

Recording Log in the appropriate phase 
3 Postmortem • = Complete the Project Plan Summary form with actual 

time, defect, and size data 
 Exit Criteria • = A thoroughly tested program  

• = Completed Project Plan Summary with estimated and 
actual data  

• = Completed PROBE worksheet. 
• = Completed Design Review and Code Review Check-

lists. 
• = Completed Process Improvement Proposal (PIP) form  
• = Completed Defect and Time Recording Logs 
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Table 43:  CSP2.0 Planning Script 

Phase 
Number 

Purpose To guide the CSP planning process 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty PROBE Size Estimating Template  
• = Historical estimated and actual size and resource data    
• = Empty Time Recording Log 

1 Program Re-
quirements 

• = Produce or obtain a requirements statement for the pro-
gram  

• = Ensure the requirements statement is clear and unambi-
guous  

• = Analyze the program requirements by producing a 
comprehensive set of Use Cases for the set of re-
quirements.  Complete the Use Case Flow-of-Events 
template for each use case.  

• = Resolve any questions 
2 Size Estimate • = Produce a program conceptual design.  

• = Use the PROBE method to estimate of the total new 
and changed LOC required to develop this program 

• = Estimate the base, added, deleted, modified, and re-
used LOC 

• = Complete the Size Estimating Template and the Pro-
ject Plan Summary 

3 Resource Es-
timate 

• = Based on the time required per LOC on previous pro-
grams, estimate of the time (for both partners) required 
to develop this program 

• = Make your best estimate of the total new and changed 
LOC required to develop this program 

 Exit Criteria • = A documented requirements statement  
• = Completed Use Case Flow-of-Events templates for 

each use case. 
• = The program conceptual design 
• = Completed Size Estimating Template 
• = Estimated development time and program size data en-

tered in the Project Plan Summary  
• = Actual time spent planning entered in the Time Re-

cording Log 
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Table 44:  CSP2.0 and CSP2.1 Project Plan Summary 

Student  Date  
Program  Program #  
Instructor  Language  

 
Summary    This 

Program 
 Programs 

to Date 
    

LOC/Hour           
Planned Time           
Actual Time           
CPI 
(Cost-
Performance 
Index) 

          

Defects/ 
KLOC 

          

Yield %           
% Appraisal 
COQ 

          

% Failure 
COQ 

          

COQ A/F 
Ratio 

          

           
Program 
Size (LOC) 

 Plan  Actual  To Date     

Base(B)           
  Deleted(D)           
  Modified(M)           
  Added(A) 
  (T - B + D - R) 

          

  Reused(R)           
Total New 
and 
Changed(N) 
(A + M) 

          

Total LOC (T)           
Total New 
Reused 

          

           
Time in 
Phase 
(min.) 

     Plan  Total 
Actual 

 To Date 
%   

 Individual  Collaborative 

  Planning      
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  Design      
  Code      
  Compile      
  Test      
  Postmortem      
      Total      

      
      

Defects In-
jected 

  Actual    Individual Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
      Total       

      
Defects 
Removed 

 Actual  Individual Collaborative 

  Planning      
  Design      
  Code      
  Compile      
  Test      
      Total       
      
Defect Re-
moval 
Efficiency 
(Defects/Hour) 

    This Pro-
gram 

 Programs to 
Date 

Design Re-
view 

     

Code Re-
view 

     

Compile      
Test      
      
Defect Re-
moval 
Leverage 
(vs Test) 

     

Design Re-
view 
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Code Re-
view 

     

Compile      
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Table 45:  CSP2.0 and CSP2.1 Project Plan Summary Instructions 

Purpose This form holds the estimated and actual project data in a conven-
ient and readily retrievable form 

Header Enter the following: 
• = Your name and today’s date 
• = The program name and number 
• = The instructor’s name 
• = The language you used to write the program 

Summary • = Enter the new and changed LOC per hour for this program and 
for all programs developed to date. 

• = Enter the actual and to date defect data 
• = Enter the actual and to date yield 
• = Enter the actual and to date Appraisal Cost of Quality:  the percent-

age of development time spent in compile and test 
• = Enter the actual and to date Failure Cost Of Quality: the percentage 

of development time spent in compile and test 
• = Enter the A/F Ratio:  the ratio of Appraisal COQ divided by Failure 

COQ  
Program Size 
(LOC) 

Prior to Development: 
• = If you are modifying or enhancing an existing program, count that 

program’s LOC and enter it under Base – Actual 
• = From the Size Estimating Template, enter estimated object LOC 

(E) under plan. 
• = Enter the estimated new and changed LOC (N) from the Size Es-

timating Template. 
• = Estimate the numbers of deleted (D) and reused (R) LOC and 

combine with the measured base (B) LOC so that  
T = N + B – M – D + R 

After Development: 
• = If the base LOC (B) has changed, enter the new value 
• = Measure the total program size and enter it under Total LOC (T) – 

Actual 
• = Review your source code and determine the actual LOC that were 

deleted (D), modified (M), or reused (R).  Enter these in the appro-
priate Actual row. 

• = Calculate the LOC of added code as A = T – B + D – R 
• = Calculate the total new and changed LOC as N = A + M. 

Time in Phase • = Under Plan, enter estimated total time from the Size Estimating 
Template and time by phase.  

• = Under Actual, enter the total actual time in minutes spent in each 
development phase (should be the sum of the Individual and Col-
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laborative time). 
• = Under Individual, enter the total actual time spent by any partner in-

dividually 
• = Under Collaborative, enter the total actual time spent the partners 

collaboratively 
• = Under To Date %, enter the percentage of Total time (versus your 

plan) in each phase. 
Defects In-
jected 

• = Under Actual, enter the number of defects injected in each phase 
(should be the sum of the Individual and Collaborative defects). 

• = Under Individual, enter the total defects time injected by phase when 
a partner was working individually 

• = Under Individual, enter the total defects time injected by phase when 
the partners were working collaboratively 

Defects Re-
moved 

• = Under Actual, enter the number of defects removed in each phase 
(should be the sum of the Individual and Collaborative defects). 

• = Under Individual, enter the total defects time removed by phase 
when a partner was working individually 

• = Under Individual, enter the total defects time removed by phase 
when the partners were working collaboratively 

Defect Re-
moval 
Efficiency 

• = Under This Program, enter the actual efficiencies (defects/hour) 
achieved for this program 

• = Under Programs To Date, enter the actual efficiencies (defects/hour) 
achieved for all programs to date 

Defect Re-
moval 
Leverage 

• = Under This Program, enter the actual leverage (defects/hour of this 
phase divided by defects/hour test) achieved for this program 

• = Under Programs To Date, enter the actual leverage (defects/hour of 
this phase divided by defects/hour test) achieved for all programs to 
date 
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Table 46:  CSP2.1 Process Script 

 Phase 
Number 

Purpose To guide you in collaboratively developing module-level 
programs 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty PROBE Size Estimating Template. 
• = Historical estimate and actual size and time data. 
• = Empty Time and Defect Recording Logs  
• = Stop watch (optional) 

1 Planning • = Produce or obtain a requirement statement  
• = Analyze the requirements statement via the develop-

ment of a thorough set of use cases.   
• = Use the PROBE method to estimate the total new and 

changed LOC required  
• = Use the PROBE method to estimate the required devel-

opment time of both partners  
• = Complete a Task Planning Template. 
• = Complete a Schedule Planning Template. 
• = Enter the plan data in the Project Plan Summary form  
• = Record the time spent in the Time Recording Log for 

Planning 
2 Development • = Perform a CRC card exercise in order to develop a pre-

liminary high-level design. 
• = Design the program  
• = Review the design and fix and log all defects found. 
Perform the steps below iteratively: 

• = Implement the design  
• = Review the code and fix and log all defects found. 
• = Compile the program and fix and log all defects found  
• = Test the program and fix and log all defects found  
• = Record the time spent in these activities in the Time 

Recording Log in the appropriate phase 
3 Postmortem • = Complete the Project Plan Summary form with actual 

time, defect, and size data 
 Exit Criteria • = A thoroughly tested program  

• = Completed Project Plan Summary with estimated and 
actual data  

• = Completed PROBE worksheet. 
• = Completed Design Review and Code Review Check-

lists. 
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• = Completed Process Improvement Proposal (PIP) form  
• = Completed Defect and Time Recording Logs 
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Table 47:  CSP2.1 Planning Script 

Phase 
Number 

Purpose To guide the CSP planning process 

 Entry criteria • = Problem description  
• = Empty Project Plan Summary form  
• = Empty PROBE Size Estimating, Task Planning, and 

Schedule Planning Template  
• = Historical estimated and actual size and resource data    
• = Empty Time Recording Log 

1 Program Re-
quirements 

• = Produce or obtain a requirements statement for the pro-
gram  

• = Ensure the requirements statement is clear and unambi-
guous  

• = Analyze the program requirements by producing a 
comprehensive set of Use Cases for the set of require-
ments.  Complete the Use Case Flow-of-Events 
template for each use case.  

• = Resolve any questions 
2 Size Estimate • = Produce a program conceptual design.  

• = Use the PROBE method to estimate of the total new 
and changed LOC required to develop this program 

• = Estimate the base, added, deleted, modified, and reused 
LOC 

• = Complete the Size Estimating Template and the Project 
Plan Summary 

3 Resource Es-
timate 

• = Based on the time required per LOC on previous pro-
grams, estimate of the time (for both partners) required 
to develop this program 

• = Make your best estimate of the total new and changed 
LOC required to develop this program 

4 Task and 
Schedule 
Planning 

• = For projects requiring several days or more of work, 
complete the Task Planning and Schedule Planning 
Templates. 

 Exit Criteria • = A documented requirements statement  
• = Completed Use Case Flow-of-Events templates for 

each use case. 
• = The program conceptual design 
• = Completed Size Estimating Template 
• = For projects requiring several days or more of work, 

complete the Task Planning and Schedule Planning 
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Templates 
• = Estimated development time and program size data en-

tered in the Project Plan Summary  
• = Actual time spent planning entered in the Time Re-

cording Log 
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Table 48:  CSP2.1 Development Script 

Phase 
Number 

Purpose To guide the development of small programs 

 Entry criteria • = Requirements statement  
• = Project Plan Summary with planning completed  
• = For projects of several days’ duration or more, com-

pleted Task Planning and Schedule Planning 
Templates 

• = Time and Defect Recording Logs with planning com-
pleted  

• = Coding Standard. 
Note: The terms driver and non-driver are used below. The driver is the partner who 
has control of the recording medium (ex: paper, computer keyboard) and is recording 
the design or implementing code or fixing code. The non-driver is the other partner who 
is actively observing the driver -- identifying defects, giving suggestions, etc. When a 
partner is working alone, he or she is considered the driver, and no one is filling the 
non-driver role. 
1 Design • = Review the requirements and  

• = Produce a design to meet the requirements by perform-
ing a CRC card exercise with partners and/or members 
of the product team.   

• = Include in your design a class diagram that lists the 
properties and methods of each class and demonstrates 
which other classes the class is dependent upon for ser-
vices/information.   

• = The driver records the design in pre-determined for-
mat/on pre-determined medium.  

• = The non-driver observes to ensure the design is being 
recorded efficiently and effectively meets the require-
ments.  The non-driver identifies defects and gives 
suggestions for alternative designs.  

• = Periodically, switch drivers.  
• = Record design time in the Time Recording Log 

2 Design Re-
view  

• = Follow the Design Review Checklist and review the 
design.  

• = Fix all defects found.  
• = Record defects in Defect Recording Log  
• = Record Design Review time in Time Recording Log 

3 Prepare Test 
Cases 

• = Prepare a preliminary set of test cases using the Test 
Case Template.  The test case should validate that all 
requirements have been properly implemented and pos-
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sible error conditions have been properly handled.  (De-
tails that are not yet know can be completed after code 
development.)  Use the Unit Test Checklist to ensure 
test coverage.  

• = Fix any design defects surfaced by writing the test 
cases.  Record these defects in the Defect Recording 
Log.  

• = Record test development time as Testing time in the 
Time Recording Log. 

Perform Code, Compile and Test (below) iteratively. Choose an element of the design 
and code it, compile it and test it before choosing another element of the design to im-
plement. 
4 Code • = Implement the design following the Coding Standard.  

• = The driver implements the design by typing code via 
the keyboard.  

• = The non-driver is observes to ensure the code properly 
implements the design, and conforms to the Coding 
Standard, identifying defects whenever necessary and 
giving suggestions for alternative implementations.  

• = Periodically, switch drivers.  
• = Record any requirements or design defects in the De-

fect Recording Log  
• = Record coding time in the Time Recording Log 

5 Code Review  • = Using the Code Review Checklist and review the code.  
• = Fix all defects found.  
• = Record defects in the Defect Recording Log  
• = Record Code Review time in Time Recording Log. 

6 Compile • = Compile the program until error-free.  
• = Both partners identify and discuss all defects found and 

the possible implications of these defects elsewhere in 
the code.  

• = The driver implements the code changes by fixing code 
via the keyboard.  

• = The non-driver observes to ensure the fix is properly 
implemented, identifying erroneous fix implementa-
tions.  

• = Periodically, switch drivers.  
• = Record all defects found in Defect Recording Log  
• = Record compile time (until program compiles error-

free) in the Time Recording Log 
7 Test • = Develop additional test cases using the Test Case Tem-

plate.  Complete any additional, new information on 
previously developed test cases.  Use the Unit Test 
Checklist to ensure test coverage.  
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• = Add new test cases to an ever-enlarging set of regres-
sion tests. 

• = Test until all tests cases (including all regression tests) 
run without error  

• = Record the results running test case on the Test Case 
Template. 

• = Both partners identify and discuss all defects found and 
the possible implications of these defects elsewhere in 
the code.  

• = The driver implements the code changes by fixing code 
via the keyboard.  

• = The non-driver observes to ensure the fix is properly 
implemented, identifying erroneous fix implementa-
tions.  

• = Periodically, switch drivers.  
• = Record defects in the Defect Recording Log  
• = Record test time (until all test cases run error-free) in 

the Time Recording Log 
 Exit Criteria • = A thoroughly tested program that conforms to the Cod-

ing Standard  
• = Completed Design Review and Code Review Check-

lists.  
• = Completed Unit Test Checklists 
• = Completed Defect Recording Log  
• = Completed Time Recording Log 
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Table 49:  CSP2.1 Postmortem Script 

Phase 
Number 

Purpose To guide the CSP postmortem process 

 Entry criteria • = Problem description and requirements statement 
• = Project Plan Summary with planned program size and 

planned development time 
• = For projects of several days’ duration or more, com-

pleted Task Planning and Schedule Planning 
Templates 

• = Completed Design Review and Code Review Check-
lists 

• = Completed Unit Test Checklists 
• = Completed Time Recording Log  
• = Completed Defect Recording Log  
• = A tested and running program that conforms to the 

Coding Standard 
1 Defects In-

jected 
• = Determine from the Defect Recording Log the number 

of defects injected in each phase.  
• = Enter this number under Defects Injected -- Actual on 

the Project Plan Summary 
2 Defects Re-

moved 
• = Determine from the Defect Recording Log the number 

of defects removed in each phase.  
• = Enter this number under Defects Removed -- Actual on 

the Project Plan Summary 
3 Size • = Count the LOC in the completed program.  

• = Determine the base, reused, deleted, modified, added, 
total, total new and changed, and new reused LOC  

• = Enter these data on the Project Plan Summary. 
4 Time • = Review the completed Time Recording Log  

• = Enter the total time spent in each phase under Actual 
on the Project Plan Summary 

 Exit Criteria • = A fully tested program that conforms to the Coding 
Standard   

• = Completed Use Case Flow-of-Events templates  
• = Completed Project Plan Summary Form  
• = Completed PIP form describing process problems, im-

provement suggestions, and what went well.  
• = Completed Defect Recording Log and Time Recording 

Log 
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APPENDIX C 

USE CASE/FLOW OF EVENTS EXAMPLE 

Program Specifications: 

This program is a simulation of automobile traffic flow/traffic signals at a typical in-
tersection.  Traffic flows in both directions on each of the cross streets.  Cars form into 
eight different queues at the intersection:    

Abbreviation Traffic Flow 
N from the north, headed straight south 

NL from the north, headed east (left at intersection) 
E from the east, headed straight west 

EL from the east, headed south (left at intersection) 
S from the south, headed straight north 

SL from the south, headed west (left at intersection) 
W from the west, headed straight east 

WL from the west, headed north (left at intersection) 
• = When a car enters the intersection, if the queue there is empty and the light is green, 

they can clear the intersection.  Else, they join the appropriate queue 
• = When the system is initiated, the traffic signal allows traffic to flow from NL and 

SL.  Next it allows traffic to flow from N and S.  Then, it allows traffic flow from 
EL and WL.  Lastly, it allows traffic to flow from E and W -- then starts again with 
NL and SL and so forth.  

• = When a signal light changes to green it can allows cars to pass through the intersec-
tion or get out of the queue.    
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UML Use Case Diagram: 
 

Car

Traffic Controller
Change Light

<<Communicates>> Light Status
<<Uses>>

Car Queue

<<Uses>>

Clear Intersection

<<Communica tes>>

<<Us es>>

<<Uses>>
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Use Case Flow of Events: 
 
1 Flow of Events for the Clear Intersection Use Case 
1.1  Preconditions 
 The Initialize sub-flow of the Change Light use case, the Initialize sub-flow of 

the Light Status use case, and the Initialize sub-flow of the Car Queue use case 
must be executed before this use case begins. 

1.2 Main Flow 
 This use cases begins when a car enters the intersection.  The car checks its 

status (S-1).  The use case ends when the car clears the intersections (S-4). 
1.3 Sub-flows  
 S-1: Check Status 

Car checks status (S-2, S-3).  If the light is green and the queue is empty, the car 
clears the intersection (S-4).  Otherwise, it joins a queue (S-5). 

 S-2:  Check Light 
Execute the Report Status sub-flow of the Light Status use case.  Send a mes-
sage indicating if the light is green or red. 

 S-3:  Check Queue 
Execute the Report Status sub-flow of the Car Queue use case.  Send a message 
indicating if the queue is empty or not.  

 S-4:  Go 
The car clears the intersection and the use case ends. 

 S-5:  Join a Queue 
Send a message to the Add to Queue sub-flow of the Car Queue use case. 

1.4 Alternative Flows 
 None. 
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2 Flow of Events for the Change Light Use Case 
2.1  Preconditions 
 None. 
2.2 Main Flow 
 The traffic lights are initialized (S-1).  The lights change (S-2) when the Traffic 

Light Controller (actor) advances the lights. 
2.3 Sub-flows  
 S-1:  Initialize 

The traffic lights are initialized with all lights red except NL and SL.  NL and 
SL are green. 

 S-2:  Advance Lights 
Lights are advanced in the following order: 
When the system is initialized, the traffic signal allows traffic to flow from NL 
and SL.  Next, it allows traffic to flow from N and S.  Then it allows traffic flow 
from EL and WL.  Lastly, it allows traffic to flow from E and W – then starts 
again with NL and SL, and so forth. 
 
When a light is changed (from green to red or from red to green), a message is 
sent to the Update Status sub-flow of the Light Status use case. 

2.4 Alternative Flows 
 None. 

 
 
 

3 Flow of Events for the Light Status Use Case 
3.1  Preconditions 
 None. 
3.2 Main Flow 
 Update (S-1) and report (S-2) the status of a traffic light color. 
3.3 Sub-flows  
 S-1:  Update status. 

Change the color of the lights.  If the light is turned to green, send a message to 
the Release from Queue subflow of the Car Queue use case. 

 S-2:  Report Status 
Send a message indicating the color of the traffic light. 

3.4 Alternative Flows 
 None. 
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4 Flow of Events for the Car Queue Use Case 
4.1  Preconditions 
 None. 
4.2 Main Flow 
 This use case begins by initializing the queue (S-1).  Cars may be added to the 

queue (S-2) or released from the queue (S-3).  
4.3 Sub-flows  
 S-1:  Initialize 

The queue is initialized with zero cars. 
 S-2:  Add to queue 

Receive a message from the Join a Queue sub-flow of the Clear Intersection use 
case.  Add car to queue. 

 S-3:  Release from queue 
Release cars from queue.  Send a message to the Go sub-flow of the Clear Inter-
section use case. 

4.4 Alternative Flows 
 None. 
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APPENDIX D 

PAIR PROGRAMMING QUESTIONNAIRE  

43 Respondents 
DEMOGRAPHICS: 

How long have you been a programmer in industry/research? 
  7% Less than 1 year   
17% 1 - 5 years         
76%  More than 5 years      

How long have you been with your current employer? 
30%  Less than 1 year      
45%  1- 5 years            
25% More than 5 years      

How long have you been pair programming? 
46% Less than 1 year       
23% 1 - 2 years          
31% More than 2 years     

WORKING ALONE? 

When pair programming, do you believe the two programmers should EVER 
work separately? 

74%  Yes  
26% No    

If yes,  

When do you like to work separately (check all that apply) 
  3%  During design  
16%  When thinking about a tough problem  
19%  Tackling a new domain or language issue  
50%  During experimental prototyping  
59%  Partner's sick or busy  
53%  Other (please explain below) 
COMMENT: 

mailto:lwilliam@cs.utah.edu


 

 

176

• = Experiment with a new approach and prove it to yourself before 
showing to partner  

• = Doing simple, well-defined, rote programming (like wiring entry 
fields to the GUI) 

• = Thinking about deep-concentration, logical problems 
• = Adding to test cases or refactoring test-only code  
• = Architectural thoughts, for me, are best done alone, at night, in 

bed.  And pairing doesn’t work well when making documents.  
Otherwise, pair all the time. 

After working independently, when you get back together with your 
partner what do you do with the work that was done independently? 
(choose one) 

22%  Scrap and re-write 
66%  Review and incorporate it 
  6%   Incorporate (no review) 
  6%  Other (please comment) 

What's the maximum amount of time a pair should be able to work 
independently and still be considered "pair programming"?  
21%  0-10% of the time 
12% 10-20% of the time  
21% 20-30% of the time   
12% 30-40% of the time   
15% 40-50% of the time   
  7% 50-70% of the time   
12% 70-80% of the time   
0% 80-100% of the time   

ROLE OF PERSON NOT TYPING 

What's the role of the person not typing? 

93%  Perform continuous code review 
86%  Perform continuous design review 
12%  Work on next increment/project 
42%  Think about next increment/project 
16%  Look out the window/anything 
26%  Other (please comment below) 

COMMENTS: 

• = Stop the other person from deviating from the process/from the assigned 
task 

• = Provide strategic viewpoint 
• = Reminders of method names or to test 
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• = Ask "what the heck is that??" / ask general questions about what the typ-
ist is doing 

• = Perform continuous analysis review "Is that really what they're asking 
for?” 

• = Sometimes teach the other person (if you're more experienced in some-
thing) 

• = The person not typing must be as active and engaged and the person typ-
ing 

• = Peer-social effects:  the act of having a (friendly) person nearby puts the 
typing programmer into more of a ‘team’ mode – the typist is more likely 
to behave as expected rather than as she/her personally desires 

• = Take notes about thoughts, goals, and TO DO lists 
• = Think about what is being put in and see how it fits into the design 
• = Pull up useful documentation to help with current work. 
• = Suggest alternatives 

REVIEWS 

When pair programming, do you do a design review? 

67%  Yes, we review the design while we create the design 
  7%  Yes, we review once we are done with the design 
  5%  No 
21%  Other (please comment below) 

COMMENTS: 

• = Sometimes review with technical stakeholders 
• = CRC Cards with others 
• = When someone feel particularly uncomfortable with a certain part. 
• = "While we are creating and also at the end.  This is the power of pair pro-

gramming." 
• = Design reviews and code reviews are continuous.  The design sits next to 

the pair. 
• = We try to hold design reviews off until refactoring. 

If you do a design review, do you use a pre-defined design checklist? 

  9%  Yes 
91%  No 

When pair programming, do you do a code review? 

63%  Yes, we review the code while we create the code 
  5%  Yes, we review together once we are done with the code, but before we 
compile 
  2%  Yes, we review together once we are done with the code, but after we 
compile 
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  2%  Yes, we review with a larger development group 
  9%  No 
19%  Other (please comment below) 

COMMENTS: 

• = "I answer no because pair programming is, by its nature, code review as 
it happens.  It's not a separate process.  It actually is better than a code 
review." 

• = "If you code together, you automatically have a very simple form of code 
review." 

• = Review with architect 
• = “We regard reviews as a way to establish project standards.  It’s less 

Your code is not to spec, fix it” and more “Here’s a neat thing we did.  
We think others should do the same thing.” 

If you do a code review, do you use a pre-defined code review checklist? 
21%  Yes  
79%  No  
MISC 

Rank how strongly you agree with these statements. 
(SA = Strongly agree; A = Agree; D = Disagree; SD = Strongly disagree) 

These factors are critical for my success in pair programming: 

 SA A D SD 
The physical layout of our work-
space allows us to both see the 
screen and to share the keyboard. 

58% 38% 2% 2% 

Management support. 35% 44% 16% 5% 
My partner must buy in to the pair 
programming concept.  65% 26% 9%  

My partner must be able to practice 
ego-less programming. 44% 40% 16%  

 

Rank how strongly you agree with these statements. 
(SA = Strongly agree; A = Agree; D = Disagree; SD = Strongly disagree) 

   
 SA A D SD 

When I pair program, I am 
more confident in our solution 
than I am when I program 

69% 27% 4%  
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alone. 

When I pair program, I enjoy 
my job more than when I pro-
gram alone. 

47% 47% 4% 2% 

  

JUST DIDN'T WORK OUT  

Was there ever someone with whom you simply couldn't pair program? If 
so, please comment on why below. 

• = Person took any comments as mistrust 
• = Person with large ego/always thought he was right 
• = Person always agrees (there needs to be some disagreement) 
• = His/her way or the highway 
• = Person with great insecurity or anxiety about their skills 
• = Overly introverted 
• = You need to be able to trust the other person's judgement  

Are there physical or environmental conditions under which pair pro-
gramming did not work for you? If so, please comment. 

• = Sitting too far away from own phone/email 
• = Computer in the corner 
• = Too much noise  
• = Open cubicles make it difficult to talk without disturbing others 
• = 21” monitors are very helpful; LCD projectors are even better 
• = “Doesn’t really work using NetMeeting.  It seems you really need to be 

physically present.” 
• = Remotely via dial-up 

GENERAL COMMENTS 
• = More productive, more demanding, more fun, you move much faster 
• = "The best thing about Pair Programming for me is the continuous discus-

sion gave me training in formulating the thoughts I have about design 
and programming, thereby helped me reflect over them and made me a 
better designer/programmer. 

• = You must be compatible with the other person 
• = Will not work if neither partner is experienced or a believer in pair pro-

gramming 
• = Not easily initially / takes time to incorporate 
• = "I strongly feel pair programming is the primary reason our team has 

been successful.  It has given us a very high level of code quality (almost 
to the point of 0 defects).  The only code we have ever had errors in was 
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code that wasn't pair programmed . . . we should really question a situa-
tion where it isn't utilized." 

• = "It is a powerful technique as there are 2 brains concentrating on the 
same problem all the time.  It forced one to concentrate fully on the prob-
lem at hand." 

• = Important for the less experienced to be given tasks to do him/herself so 
they can feel important 

• = Works well for domain knowledge transfer from one person to another as 
well as for transferring good programming practice 

• = "It takes more effort because the pace is forced by the other person all the 
time.  Neither person feels they can slack off." 

• = “My highest marks, and shiniest projects as an undergraduate were pro-
duced with partners.  I used to call it the Batman and Robin model, since 
I would work so much better regardless of the abilities of my partner.  I 
have partnered with people who were much less locally knowledgeable, 
those who were pretty similar to me, and those who impressed me.  In all 
cases, we got more done than we would have expected to get done 
alone.” 

• = “In my 20+ years in the industry, I know one thing for CERTAIN, pair-
ing works!  Better code, happier team, more productivity.” 

• = “You have to try it to believe it – but when you do, it’s very hard to go 
back.”  
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APPENDIX E 

AUTOMATED REGRESSION TESTER 

Sample Regression Tester Class Diagram: 

testcases

testMean(fileName : string, expectedResults  : double) : bool
testStdDeviation(fileName : s tring, expectedResults : double) : bool
test LinearRegression(fileNam e : s tring,  expectedBe ta0 : fl oat, expectedBeta1 : float ) : bool

suite

addTest(testname : string) : test
report() : void

test
results  : int

set Results(functionCall  :  bool) :  void

 

The testcases class contains a library of test functions.  Each function is sent 
parameters to force certain input conditions and to receive expected results.   Each 
function returns a boolean value indicating whether the actual test obtained the expected 
results.     

 
The test class has an integer attribute, which stores the status of the test case:  Not 

Run, Pass or Fail.  The setResults method is used to set the value of this attribute.  
 
The suite class contains a collection of test class instances; test classes instances are 

added to the suite via the addTest method.  The suite report method produces a sum-
mary report. 
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Below is a sample automated test case program. 

int main() { 

  Test* testcase; 

  Suite s("Linear Regression"); 
  testcase = s.addTest("Normal Input"); 
 
  testcase.setResults(testLinearRegression("input1.txt", -22.55, 1.72)); 

   . . . 

  s.report();  

  return 0; 

} 
 

The Suite report() function will print the name of the test suite.  Then it will go through 
all the test cases that have been added in the test suite and whether or not it has been 
passed.  Lastly, it will print a summary.  For example: 

Suite:  Linear Regression 
====================  

Test:  Normal Input    Passed 
Test:  Alpha Input      Failed 
Test:  Three Numbers   Not Run 

====================  

1 Passed 
1 Failed 
1 Not Run 
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APPENDIX F 

BREAKDOWN OF NPV INCENTIVE INTO  

LOWER-LEVEL METRICS 

(Reprinted from [56], see next page for abbreviation definitions) 
A:  Test Strategy 
B:  Base Strategy 

NPVI  
Net Present Value Incentive 

(NPVA – NPVB)/TPS = (PVI * NAVB + DCI*IB)/(NAVB+IB) 
 

PVI 
Present Value Incentive 

(PVA – PVB)/NAVB = (eNAVA/(1+d)β – 1) 
where β= TB(1-1/eDTA) 

NAVA 
Net Asset Value Advantage 

log NAVA – log NAVB = log (eAVACB – MB/eOCA) – log NAVB 

DCI 
Development 
Cost Incen-

tive 
(IB – IA)/IB 
= 1-1/eDCA 

AVA 
Asset Value Advantage 

log CA – log CB = EEA + PCA + QFA + TVA 
 

EEA 
Early En-

try 
Advantage 
MEEA (1- 
1/(1 + DTA)) 

DTA 
Development 

Time Ad-
vantage 

log TB – log 
TA 

MEEA 
Max(EEA) 

PCA 
Product 

Cost  
Advantage

TVA 
Termina-

tion Value 
Advantage 

QFA Qual-
ity/ 

Functionality 
Advantage 

OCA 
Operation 
Cost Ad-
vantage 

log MB – 
log MA 

DCA De-
velopment 
Cost Ad-
vantage 

log IB  
– log IA 
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Development Time T 
Development Cost I 
(Future) Asset Value C 
Operation Cost M 
Product Risk d 
Total Project Scale  
(Estimated product revenue volume) 

TPS 

Product Cost Advantage 
(Relative contribution of direct product sav-
ings to the asset value of the test strategy) 

PCA 

Quality/Function Advantage 
(Relative contribution to the asset value of the 
test strategy of the ability to control the qual-
ity and functionality of the end system) 

QFA 

Termination Value Advantage 
(Relative contribution of termination value to 
the asset value of the test strategy.  Termina-
tion value includes the value of reusable 
software salvaged upon project termination.) 

TVA 
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