

THE COLLABORATIVE SOFTWARE

PROCESS

by

Laurie Ann Williams

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

The University of Utah

August 2000

Copyright © Laurie Ann Williams 2000

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Laurie Ann Williams

This thesis had been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

__________________ __
 Chair: Robert R. Kessler

__________________ __
 Martin L. Griss

__________________ __
 Christopher R. Johnson

__________________ __
 J. Fernando Naveda

__________________ __
 Joseph L. Zachary

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

F I N A L R E A D I N G A P P R O V A L

To the Graduate Council of the University of Utah:

I have read the dissertation of Laurie Ann Williams in its final form and have found that
(1) its format, citations, and bibliographic style are consistent and acceptable; (2) its il-
lustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the supervisory committee and is ready for submission to
The Graduate School.

_________________________ __
Date
 Robert R. Kessler
 Chair, Supervisory Committee

Approved for the Major Department

Robert R. Kessler

Chair

Approved for the Graduate Council

__
David S. Chapman

Dean of The Graduate School

ABSTRACT

Anecdotal and qualitative evidence from industry indicates that two programmers

working side-by-side at one computer, collaborating on the same design, algorithm,

code, or test, perform substantially better than the two working alone. Statistical evi-

dence has shown that programmers perform better when following a defined, repeatable

process such as the Personal Software Process (PSP). Bringing these two ideas to-

gether, the Collaborative Software Process (CSP) has been formulated. The CSP is a

defined, repeatable process for two programmers working collaboratively. The CSP is

an extension of the PSP, and it relies upon the foundation of the PSP.

To validate the effectiveness of CSP, an experiment was run in 1999 with approxi-

mately 40 senior Computer Science students at the University of Utah. All students

learned both the CSP and the PSP. Two-thirds of the students worked in two-person

collaborative teams using the CSP to develop their programming assignments. The

other students worked independently using the PSP to develop the same assignments.

Additionally, a significant amount of input and confirmation from professional engi-

neers who practice collaborative programming was factored into the research.

The research contributed a defined, repeatable process, the Collaborative Software

Process, for collaborative programming pairs. The experiment validated the following

quantitative findings about collaborative teams using the CSP:

v

1. Collaborative pairs spend approximately 15% more time than do individu-

als on the same task. This additional time, however, is not statistically

significant.

2. Collaborative pairs achieve a higher quality level for programming prod-

ucts. Pairs had 15% less defects in their code. The higher quality level is

statistically significant.

3. Considering the long-term field support savings of higher quality pro-

gramming products, collaborative programming is cheaper for an

organization than individual programming.

4. Consistently, 95% of collaborative programmers asserted that they enjoy

their work more and are more confident in their work than when they pro-

gram alone.

Additionally, the research resulted in many qualitative findings about collaborative

programming. Most notable are the positive effects of increased problem solving skills,

better designs, augmented learning, and improved team building for collaborative pairs.

 Organizations in which the engineers consistently switch partners also note increased

communication, enhanced teamwork, and reduced product risk.

To Danny, Christopher, Kimberly and Brian
Your love is the greatest gift of all.

TABLE OF CONTENTS

ABSTRACT..IV

LIST OF TABLES AND FIGURES ..X

ACKNOWLEDGMENTS..XIV

CHAPTER 1 INTRODUCTION ..1

1.1 Research Motivation ...1
1.2 Pair-Programming...2
1.3 Software Process ...3
1.4 The Research Approach ..4
1.5 Research Contributions ...5
1.6 Summary of Remaining Chapters ...6

CHAPTER 2 A SURVEY OF RELATED WORK ..8

2.1 The Personal Software Process (PSP)...8
2.2 eXtreme Programming..9
2.3 Distributed Cognition..11
2.4 Organizational Pattern...13
2.5 Other Studies...13

CHAPTER 3 COLLABORATIVE SOFTWARE PROCESS DEFINITION.................15

3.1 Process Rationale ..15
3.2 CSP Definition ..18

3.2.1 CSP Level 0: Collaborative Baseline..18
3.2.2 CSP Level 1: Collaborative Quality Management21
3.2.3 CSP Level 2: Collaborative Project Management31

3.3 Differences Between CSP and PSP...34

CHAPTER 4 QUALITATIVE RESULTS..38

4.1 Why Collaborative Programming is Beneficial ..39
4.1.1 Pair-Pressure ..39
4.1.2 Pair-Think ..41
4.1.3 Pair-Relaying..42
4.1.4 Pair-Reviews ..43

viii

4.1.5 Debugging by Explaining...44
4.1.6 Pair-Learning..45
4.1.7 Team Building..50
4.1.8 Project Risk ..50
4.1.9 Maslow’s Needs Hierarchy ..51

4.2 Success Factors for Effective Collaboration ...53
4.2.1 Pair-Jelling ...53
4.2.2 Project Ownership..53
4.2.3 Mutual and Self-Respect ..54
4.2.4 Ego-Less Programming..55
4.2.5 Workspace Layout..56
4.2.6 Taking Breaks ..58

CHAPTER 5 QUANTITATIVE RESULTS...59

5.1 An Economic Evaluation of the Collaborative Software Process.................60
5.1.1 Pair-Quality..61
5.1.2 Pair-Time ...63
5.1.3 Net Present Value Analysis..66
5.1.4 Economic Advantage of Cycle Time and Product Quality73

5.2 Engineer Satisfaction ..73
5.3 Secondary Indications ...77

5.3.1 Collaboration and Teamwork...77
5.3.2 Design Quality ...78
5.3.3 Collaboration by Phase ..79
5.3.4 Collaboration Perhaps Not for All ...83
5.3.5 Gender and Personality-Type Considerations..85

CHAPTER 6 SUMMARY AND CONTRIBUTIONS ...86

6.1 Studying and Understanding the Process ..86
6.2 The System the Engineer Works In...88
6.3 Summary of Contributions..89

CHAPTER 7 FUTURE WORK..91

APPENDIX A EXPERIMENTAL DESIGN ..94

APPENDIX B THE COLLABORATIVE SOFTWARE PROCESS (CSP)
DOCUMENTATION..104

APPENDIX C USE CASE/FLOW OF EVENTS EXAMPLE.....................................170

APPENDIX D PAIR PROGRAMMING QUESTIONNAIRE.....................................175

APPENDIX E AUTOMATED REGRESSION TESTER..182

APPENDIX F BREAKDOWN OF NPV INCENTIVE INTO LOWER-LEVEL
METRICS ...184

ix

REFERENCES..186

LIST OF TABLES AND FIGURES

Table Page

Table 1: Differences between PSP and CSP Levels ..36

Table 2: US Average Defect Discovery Rate...71

Table 3: Present Value of Costs (PVC) Analysis...71

Table 4: CSP Documentation Cross-Reference ...104

Table 5: CSP0 Process Script...106

Table 6: CSP0 Planning Script...107

Table 7: CSP0 Development Script ...108

Table 8: CSP0 Postmortem Script ..110

Table 9: CSP0 Project Plan Summary ...111

Table 10: CSP0 Project Plan Summary Instructions..112

Table 11: Time Recording Log ..113

Table 12: Time Recording Log Instructions ..114

Table 13: Defect Recording Log..115

Table 14: Defect Recording Log Instructions ..116

Table 15: CSP0.1 Process Script..117

Table 16: CSP0.1 Planning Script..118

Table 17: CSP0.1 Development Script ..119

Table 18: CSP0.1 Postmortem Script ..121

Table 19: CSP0.1 and CSP 1.0 Project Plan Summary ...122

Table 20: CSP0.1 and CSP 1.0 Project Plan Summary Instructions............................124

Table 21: Process Improvement Proposal (PIP) ..126

Table 22: Process Improvement Proposal (PIP) Instructions.......................................127

Table 23: C++ Coding Standard ..128

Table 24: CSP1.0 Process Script..130

Table 25: CSP1.0 and CSP 1.1 Planning Script...131

Table 26: CSP1.0 Development Script ..132

Table 27: CSP1.0 Postmortem Script ..134

Table 28: Use Case Flow of Event Template...135

Table 29: Use Case Flow of Events Template Instructions ...136

Table 30: CSP1.1 Process Script..137

Table 31: CSP1.1 and CSP2.0 Development Script ..138

Table 32: CSP1.1 and CSP2.0 Postmortem Script ..141

Table 33: CSP1.1 Project Plan Summary ..142

Table 34: CSP1.1 Project Plan Summary Instructions...144

Table 35: Individual Code Review Checklist ..146

Table 36: Collaborative Code Review Checklist ...148

Table 37: Individual Design Review Checklist ...149

Table 38: Collaborative Design Review Checklist ..150

Table 39: Test Case Template..151

Table 40: Test Case Template Instructions ..152

Table 41: Test Coverage Checklist ..153

Table 42: CSP2.0 Process Script..155

Table 43: CSP2.0 Planning Script..156

Table 44: CSP2.0 and CSP2.1 Project Plan Summary ..157

Table 45: CSP2.0 and CSP2.1 Project Plan Summary Instructions.............................160

Table 46: CSP2.1 Process Script..162

Table 47: CSP2.1 Planning Script..164

Table 48: CSP2.1 Development Script ..166

Table 49: CSP2.1 Postmortem Script ..169

Figure Page

Figure 1: CSP Evolutionary Learning Approach ...17

Figure 2: CRC Card Format...23

Figure 3: Maslow’s Hierarchy of Needs ..51

Figure 4: Workspace Layout ..58

Figure 5: Post Development Test Cases Passed...61

Figure 6: Pair-Quality Boxplot...62

Figure 7: Elapsed Time ..64

Figure 8: Pair-Time Boxplot ..65

Figure 9: Net Present Value ...68

Figure 10: Cost Saving of CSP Through Time ..72

Figure 11: Pair Satisfaction..75

Figure 12: Pair Confidence ..75

Figure 13: Relative Number of Lines of Code...79

Figure 14: Collaboration by Phase ...80

Figure 15: Average Collaboration by Phase for Performance Types.............................83

ACKNOWLEDGMENTS

It seems to me shallow and arrogant for any man in these times to claim
he is completely self-made, that he owes all his success to his own un-
aided efforts. Many hands and hearts and minds generally contribute to
anyone’s notable achievements. – Walt Disney

This dissertation would not have been possible except for contributions of many

hearts and minds over the years. I will begin by thanking my Ph.D. committee mem-

bers; in particular, my advisor Dr. Robert R. Kessler. During my entire time at the

University of Utah, Dr. Kessler has been a wise and dependable mentor and an exem-

plary role model in helping me achieve my professional goals. Dr. Kessler always has

given me invaluable guidance, support and enthusiastic encouragement. Heartfelt

thanks are also extended to other committee members Dr. Martin Griss, Dr. Christopher

Johnson, Dr. Fernando Naveda, and Dr. Joseph Zachary. Your suggestions and guid-

ance greatly improved my research.

A special thanks is given to several other people. First, Jim Coplien of AT&T Bell

Labs planted the seeds in my brain from which my research hypothesis grew. He also

been a wonderful friend and sounding board for me and has given graciously of his time

in helping me succeed. Alistair Cockburn of Humans and Technology was also very

influential in my research direction and has been great to collaborate with for several

years; Alistair has also changed the way I view the people aspects of Software Engineer-

ing. Lastly, I would like to thank Dr. William Thompson. In his own way, Dr.

Thompson dramatically changed my research direction and, ultimately, my academic

career path.

From the bottom of my heart, I thank my family for your unconditional love and

support during these challenging years. Danny, like the song goes, “You gave me wings

so I could fly. You catch me if I fall . . . Your love is the greatest gift of all.” I could

not have done it without you! The absolute and unqualified love of my children, Chris-

topher, Kimberly, and Brian gave me the strength to persevere. I always knew that even

if a paper was rejected or I didn’t do as well as I would have liked on an exam or

presentation, their smiling eyes would help put life back in perspective. I know I have

been a very busy mom for them, but I only hope I have instilled in them the importance

of life-long learning. Lastly, I want to thank my parents for their love and support.

From childhood, they inspired me to always strive for excellence and gave me a love of

learning.

CHAPTER 1

 INTRODUCTION

Quality is free. It's not a gift. What costs money are the unquality things
-- all the actions that involve not doing jobs right the first time. . .Quality
is not only free, it is an honest-to-everything profit maker. [1]

1.1 Research Motivation

In the early days of computing, most of the programming was done by scientists try-

ing to solve specific, relatively small mathematical problems. The programming model

that emerged from these days has been called the “code-and-fix model . . . [which] de-

notes a development process that is neither precisely formulated nor carefully controlled

[2].” Ghezzi and others [2] describe the code-and-fix model as consisting of two steps:

1) write code

2) fix code to eliminate errors, enhance existing functionality, or add new feature

Through time, computers became cheaper and more common. More and more people

started using them to solver larger and larger problems, still using and evolving the

original programming model.

Alas, the code-and-fix model, often still used today, is not adequate to handle the

complexities of large scale software development. Some 40 years ago, the term “Soft-

ware Crisis” emerged to describe the software industry’s inability to provide customers

with high quality products on schedule. “The average software development project

2

overshoots its schedule by half; larger projects generally do worse. And, some three

quarters of all large systems are “operating failures” that either do not function as in-

tended or are not used at all [3].”

. . . the failure of the code-and-fix process model lead to the recognition
of the so-called software crisis . . . In particular, the recognition of a
lack of methods in the software production process led to the concept of
the software life cycle and to structured models for describing it in a
precise way in order to make the process predictable and controllable.
[2]

What is notable is the progression in the past 40 years of the visibility of the Soft-

ware Crisis from mainly scientists and software developers to the general public.

“Today, software is working both explicitly and behind the scenes in virtually all as-

pects of our lives, including the critical systems that affect our health and well-being

[4].” Certainly, Y2K brought the impact of software problems to the forefront!

Unfortunately, advances in software development techniques have been thwarted by

exponential increases in software complexity and size. The challenge, then, lies with

bridging this gap and devising techniques to successfully handle this ever-increasing

complexity. The motivation behind this research is to make an advance toward the end

of the Software Crisis – to help the software industry more reliably produce high quality

software.

1.2 Pair-Programming

 Each day, software applications grow larger and more complicated; these applica-

tions are then used in an infinite myriad of user systems. Perhaps, then, it is best for the

complexity of these applications to be tackled by two humans at a time. The idea of

pair-programming, two programmers working collaboratively on the same design, algo-

3

rithm, code, or test, has independently emerged several times over the last decade. The

practice of pair-programming is gaining popularity, primarily with the rise in the eX-

treme Programming methodology [5].

Each collaborative pair sits shoulder-to-shoulder at one computer during all phases

of development. One is the ‘designated driver.’ This engineer has control of the mouse,

keyboard, or writing utensil and is actively creating the design, code, or test. The non-

driver is observing the work of the driver and identifying tactical and strategic deficien-

cies in their work. Explicitly, the pair periodically takes turns being the driver and the

non-driver. To date, anecdotal [5, 6] and preliminary statistical [7] has suggested that

pairs produce higher quality code faster than code produced by individual programmers.

 (Note: the terms pair-programming and collaborative programming are used inter-

changeably throughout this document.)

1.3 Software Process

Successful software engineering requires the application of engineering
principles guided by informed management. The principles must them-
selves be rooted in sound theory. While it is tempting to search for
miracles and panaceas, it is unlikely that they will appear. The best
course of action is to stick to age-old engineering principles. There sim-
ply are no “silver bullets.” [2]

In the early engineering days ships sank and bridges collapsed [8]. Now, these engi-

neering fields have matured enough that these types of accidents rarely occur because

their procedures are grounded in age-old engineering principles. Generally in these

fields, customers are able to enumerate very specifically the acceptable parameters and

tolerance levels; these parameters and tolerance levels are clearly understood by the en-

gineers. Then, the engineers are equipped with tools and mathematical methods to

4

understand the consequences of these specifications and to design accordingly. Lastly,

the production and manufacturing processes in these mature fields are studied exten-

sively in order to reliably, predictably, and efficiently produce high quality products.

Software engineering, a relatively young discipline, still seeks these verified proce-

dures and solutions. Some computer scientists research design patterns to capture

proven solutions to common design problems. Other computer scientists research

mathematical methods for verifying the correctness of software algorithms. Lastly, in-

spired by the work of Deming [9] and Juran [10], the software engineering community

has realized that it takes a high-quality software development process to yield high-

quality products. Process standards such as ISO 9000 and the Capability Maturity

Model (CMM) have been developed to aid organizations achieve more predictable re-

sults by guiding them to incorporate proven procedures into their process. Companies

that have embraced the standards advocated in ISO 9000 and CMM have typically

shown tremendous improvements. For example, by “improving its development proc-

ess according to CMM “maturity,” Hughes Aircraft improved its productivity by 4 to 1

and saved millions of dollars [4].”

1.4 The Research Approach

This research combines the proven need for an established, documented software

process with the novel incorporation of pair-programming into such a process. A new

software process, The Collaborative Software Process (CSP), was synthesized as a de-

fined, repeatable method for two collaborating software engineers to develop software.

In the CSP, recommended steps for each stage of the development process – from analy-

5

sis to test – is guided by detailed scripts, templates and forms. Information provided on

the templates and forms can be analyzed to provide measurement-based feedback to the

collaborative pair. The pair uses this feedback in order to improve the effectiveness of

their own pair-process.

The research hypothesis was that collaborative pairs following the CSP would out-

perform individual engineers using a proven process similar to the CSP, the Personal

Software Process (PSP) [11] designed for solo programmers. The specific metrics used

to compare the performance of individuals vs. collaborative pairs are cycle time,

productivity and quality. In order to validate the hypothesis, a structured experiment

was run at the University of Utah in 1999 with an upper-level software engineering

class. In the experiment, collaborative pairs and individual students completed the same

assignments. The above metrics were used to compare the performance of all the

students.
1.5 Research Contributions

Through this research, a defined, repeatable process for collaborative programmers,

the CSP, was synthesized and validated. The superiority of this process versus a known,

proven, process, the PSP, was proved via a structured experiment. The experiment

showed that together two pair-programmers produce software almost as fast (total

elapsed time for the two) as one engineer. More notably, they produce software of sta-

tistically significantly higher quality. Because the two pair-programmers work in

tandem, their cycle time is essentially half of that of individual engineers. Additionally,

engineers prefer to work collaboratively. Through the documentation of the CSP, the

6

process can now be used by other organizations seeking to maximize the performance of

their engineers.

 Recently, an overwhelming amount of anecdotal and qualitative evidence has

supports the use of pair-programming as a means of producing software of higher qual-

ity on schedule. However, many still resist the practice, assuming that pair-

programming will prohibitively double software development costs. The only experi-

mental variable in the structured experiment of this research was the use/non-use of

collaborative programming. Therefore, the results can also be used to quantitatively

support general anecdotal claims of the benefits of collaborative programming in pro-

gramming environments that do not use the CSP.

1.6 Summary of Remaining Chapters

Chapter 2 provides a survey of related work. It discusses the two established soft-

ware methodologies that inspired much of this work, the Personal Software Process [11]

(PSP) and eXtreme Programming (XP). It discusses other anecdotal, qualitative, and

quantitative emergences of the benefits of pair-programming.

Chapter 3 defines the details of the Collaborative Software Process (CSP). It de-

scribes the process steps and the rationale behind CSP. A discussion compares PSP to

CSP.

Chapter 4 discusses qualitative findings of the research. First, theoretical and ob-

served reasons for the benefits of collaborative programming are discussed. Then,

factors for successful collaboration are enumerated.

7

Chapter 5 presents convincing quantitative evidence that CSP and collaborative pro-

gramming are superior to PSP and individual programming. This quantitative analysis

is based on data obtained from a carefully planned empirical study of advanced under-

graduates at the University of Utah. (Details of this experiment are explained in

Appendix A.) Benefits to the software firm and to the engineers are quantified.

Chapter 6 summarizes the conclusions and contributions of the dissertation. Chap-

ter 7 suggests future research to further validate and collaborative programming.

Six appendices provide detailed background information to support each of the

seven chapters.

CHAPTER 2

 A SURVEY OF RELATED WORK

The Collaborative Software Process was formulated after investigating the contribu-

tions of and successes in several areas of software engineering and cognitive science.

2.1 The Personal Software Process (PSP)

Structurally, the largest influence comes from the Personal Software Process [11]

(or PSP), authored by Watts S. Humphrey of the Software Engineering Institute (SEI).

PSP defines a software development framework that includes defined operations or sub-

processes and measurement and analysis techniques to help engineers understand their

own skills in order to improve their own personal performance. Each sub-process has a

set of scripts giving specific steps to follow and a set of templates or forms to fill out to

ensure completeness and to collect data for measurement-based feedback. This meas-

urement-based feedback allows the programmers to measure their work, analyze their

problem areas, and set and make goals. For example, programmers record information

about all the defects that they remove from their programs. They can use summarized

feedback on their defect removal to become more aware of the types of defects they

make to prevent repeating the same mistakes. Additionally, they can examine trends in

their defects per thousand lines of code (KLOC) and are able to see when they are mak-

ing real improvement.

9

PSP has several strong philosophies. The first is that the longer a software defect

remains in a product, the more costly it is to detect and remove it. Therefore, thorough

design and code reviews are performed for most efficient defect removal. The second

philosophy is that defect prevention is more efficient than defect removal. Careful de-

signs are developed, and data is collected to give additional input on where the

programmer should adjust their own personal software process to prevent future defects.

Lastly, PSP rests on the notion that the best estimates, and therefore the best com-

mitments, for schedule and defect rates can be made with a historical database of

information. Data regarding how long previous products took to develop and defect

rates are kept in a database for use with history-based estimation procedures. These

processes and philosophies work together to produce excellent results. According to

Ferguson, Humphrey and others at the SEI,

"SEI’s data on 104 engineers shows that, on average, PSP training re-
duces size-estimating errors by 25.8 percent and time-estimating errors
by 40 percent. Lines of code written per hour increased on average by
20.8 percent, and the portion of engineers’ development time spent com-
piling is reduced by 81.7 percent. Testing time is reduced by 43.4
percent, total defects by 59.8 percent, and test defects by 73.2 percent
[12]."

The PSP is a defined, repeatable process for an individual engineer; the CSP is a de-

fined, repeatable process for two programmers working collaboratively. The CSP is an

extension of the PSP, and it relies upon the foundation of the PSP.

2.2 eXtreme Programming

CSP is also heavily influenced by success factors of the eXtreme Programming [5]

(or XP) methodology, developed primarily by Smalltalk code developer and consultant

10

Kent Beck with colleagues Ward Cunningham and Ron Jeffries. XP does not have sta-

tistical evidence, as does PSP, to prove its effectiveness. The evidence of XP’s success

is highly anecdotal, but is so impressive that it has aroused the curiosity of many highly

respected software engineering researchers and consultants. The largest example of its

accomplishment is the sizable Chrysler Comprehensive Compensation system launched

in May 1997. The payroll system pays some 10,000 monthly-paid employees and has

2,000 classes and 30,000 methods [13]. Additionally, programmers at Ford Motor

Company, spent four unsuccessful years trying to build the Vehicle Cost and Profit Sys-

tem (VCAPS) using a traditional waterfall methodology. Then, the engineers duplicated

that system, this time successfully, in less than a year using Extreme Programming [14].

XP strongly advocates the use of pair programming. All production code is written

with a partner, to the extent that even prototyping done solo is scrapped and re-written

with a partner. Working in pairs, the engineers perform a continuous code review, not-

ing that it is amazing how many obvious but unnoticed defects another person at your

side notices. This is, perhaps, the ultimate implementation of PSP’s "defect prevention"

and "efficient defect removal" philosophies.

XP’s requirements gathering, resource allocation and design practices are a radical

departure from most accepted methodologies, such as PSP or the Rational Unified Proc-

ess [15]. Customer requirements are written as fairly informal "User Story" cards, a

rough estimate of required resources is assigned to the cards, these are assigned to a

programming pair, and coding begins. With no formal design procedures or discussions

on overall system planning or architecture, the pair determines which code in the ever-

enlarging code base needs to be added or changed and then does it, without asking any-

11

one “permission”. This practice requires the use of "Collective Code Ownership"

whereby any programming pair can modify or add to any code in the code base, regard-

less of the original programmer.

Programming pairs routinely "refactor" the code base by continuous change and en-

hancement. They view the code as the self-evolving design – they do not spend time on

a design document and, therefore, have strict self-documenting code style and comment

guidelines. XP also has particularly thorough testing procedures. Comprehensive test

cases are written and automated prior to actual code changes. The results of running

these automated new tests and previous, regression test cases determine if the

change/enhancement to implement a User Story has been done correctly without harm-

ing the implementation of other User Stories. While departing significantly from

traditional development practices, anecdotally, XP appears to be very effective. Addi-

tionally, programmers report that developing with XP practices is much more exciting

and enjoyable than with traditional processes. From XP, CSP incorporates the success-

ful use of pair programming and automated test case generation and execution.

2.3 Distributed Cognition

While those practicing XP are the largest known group of pair programmers, the

idea of pair programming did not originate with XP. In 1991 Nick Flor, a masters stu-

dent of Cognitive Science, reported on distributed cognition in a collaborative

programming pair he studied. Distributed cognition is a field of cognitive science based

on the following beliefs:

“Anyone who has closely observed the practices of cognition is struck by
the fact that the “mind” rarely works alone. The intelligences revealed

12

through these practices are distributed – across minds, persons, and the
symbolic and physical environment . . . Knowledge is commonly socially
constructed, through collaborative efforts toward shared objectives or by
dialogues and challenges brought about by differences in persons' per-
spectives. [16]"

 Flor recorded via video and audiotape the exchanges of two programmers working

together on a software maintenance task. He correlated specific verbal and non-verbal

behaviors of the two under study with known distributed cognition theories.

1. The Sharing of Goals and Plans: Collaborating programmers at-
tempt to maintain a shared set of goals and plans during
interactions. Goals specify what needs to be done, and plans specify
the means by which the goals are achieved. . . The sharing of goals
and plans leads to several different system properties: efficient
communication, searches through larger spaces of alternatives, and
shared memory for 'old' alternative plans.

2. Efficient Communication: Conversational details do not have to be
fully specified, thus minimizing the amount of talk required to encode
that which must be communicated. The current state of the problem
combined with the programmers’ shared goals and plans are suffi-
cient to determine the intent of most utterances.

3. Searching Through Larger Spaces of Alternatives: A system with
multiple actors possesses greater potential for the generation of
more diverse plans for at least three reasons: (1) the actors bring
different prior experiences to the task; (2) they may have different
access to task relevant information; (3) they stand in different rela-
tionships to the problem by virtue of their functional roles. . . An
important consequence of the attempt to share goals and plans is that
when they are in conflict, the programmers must overtly negotiate a
shared course of action. In doing so, they explore a larger number of
alternatives than a single programmer alone might do. This reduces
the chances of selecting a bad plan.

4. Shared Memory for Old Plans: A memory for old alternative plans is
useful in situations where the subjects are exploring a course of ac-
tion, decide on it being unproductive, and have to backtrack to one of
the possibly many, older alternative plans. A single programmer
alone may forget one of these alternative plans [17].

13

2.4 Organizational Pattern

In 1995 Jim Coplien published the "Developing in Pairs" Organizational Pattern

[18]. Organizational Patterns make explicit the patterns of organization, process, and

introspection that most highly productive organizations exhibit.

Using the emerging discipline of generative pattern languages, we can
capture the patterns underlying successful projects and use them to es-
tablish organizational structures and practices that will improve the
prospects for success in a new software development organization. [18]

The "Developing in Pairs" pattern professes that organizations should pair compati-

ble designers to work together – that together, they can produce more than the sum of

the two individually.

2.5 Other Studies

 Two other studies support the use of collaborative programming. Larry Constan-

tine, a programmer, consultant, and magazine columnist reports on observing "Dynamic

Duos" during a visit to P. J. Plaugher’s software company, Whitesmiths, Ltd. He im-

mediately noticed that at each terminal were two programmers working on the same

code. He reports,

Having adopted this approach, they were delivering finished and tested
code faster than ever . . . The code that came out the back of the two
programmer terminals was nearly 100% bug free . . . it was better code,
tighter and more efficient, having benefited from the thinking of two
bright minds and the steady dialogue between two trusted terminal-
mates . . . Two programmers in tandem is not redundancy; it’s a direct
route to greater efficiency and better quality. [19]

Lastly, in 1998 Temple University Professor Nosek reported on his study of 15 full-

time, experienced programmers working for 45 minutes on a challenging problem, im-

14

portant to their organization, in their own environment, and with their own equipment.

Five worked individually, ten worked collaboratively in five pairs. Conditions and mate-

rials used were the same for both the experimental (team) and control (individual)

groups. This study provided statistically significant results, using a two-sided t-test. "To

the surprise of the managers and participants, all the teams outperformed the individual

programmers, enjoyed the problem-solving process more, and had greater confidence in

their solutions." The groups completed the task 40% more quickly and effectively by

producing better algorithms and code in less time. The majority of the programmers

were skeptical of the value of collaboration in working on the same problem and

thought it would not be an enjoyable process. However, results show collaboration im-

proved both their performance and their enjoyment of the problem solving process [7].

CHAPTER 3

COLLABORATIVE SOFTWARE PROCESS DEFINITION

As discussed in the previous chapter, the framework of the CSP is modeled after

that of the PSP. Because of this, the motivation and rationale behind the development

of the Personal Software Process will be briefly discussed. Then, the major elements of

the Collaborative Software Process will be defined and described. Lastly, the PSP and

the CSP will be compared.

3.1 Process Rationale

 The Software Engineering Institute worked with leading software organizations

to define the Capability Maturity Model for Software [20] (or CMM). The purpose of

the CMM is to provide “an orderly way for organizations to determine the capabilities

of their current process and to establish priorities for improvement. It does this by es-

tablishing and defining five levels of progressively more-mature process capability

[11].” A more mature process is increasingly defined, repeatable and controlled and is

more likely to predictably produce high quality software products. In increasing level of

maturity, these five levels are: Initial, Repeatable, Defined, Managed and Optimizing.

 Each of these levels has key process areas (KPA) defined. The CMM provides

goals and example practices for each of these KPAs to guide organizations in achieving

higher levels of process maturity. Organizations have internal or external process re-

16

views to determine their maturity level of their current process and to formulate im-

provement plans for improving their maturity level. Many times, software organizations

that contract programming services are asked to evaluate and disclose their CMM level.

 CMM level can be an important factor in such an organization’s competitive position.

Humphrey, the creator of the PSP, was also instrumental in the formulation of the

CMM.

 Humphrey then essentially brought the philosophy of the CMM/process maturity to

the level of the individual engineer by the formulation of the PSP. The PSP specifically

addresses many of the KPAs. PSP defines a framework for an individual programmer

striving to help their organization achieve a higher level of maturity. Undoubtedly, im-

provements in personal capability also improve organizational performance.

 The PSP follows an evolutionary improvement approach. A student or professional

learning to fully integrate the PSP into their process begins at Level 0.0 and progresses

in their process maturity seven levels to Level 3.0. Each level incorporates new skills

and techniques into their process – skills and techniques that have proven to improve the

quality of the software process and to improve the estimating accuracy of the engineer.

The PSP is defined as a set of 77 process scripts, forms, templates, standards, and

checklists. By consistently using this documentation, a software engineer follows a

proven, disciplined software development process in which he or she receives meas-

urement-based feedback on their process effectiveness. The scripts enumerate process

steps that should be followed. Forms and templates are used to obtain and store neces-

sary data and information from the engineer in a thorough and complete manner. A

17

coding standard is defined to guide a consistent coding style. Checklists are provided to

aid in review processes.

The CSP also incorporates the evolutionary learning approach of PSP and has six

levels. These levels are summarized in Figure 1 and defined below. The CSP consists

of 45 scripts, forms, templates, standards and checklists, which are documented in Ap-

pendix B. Generally, these are based on the PSP [11], but have been adapted for

simplicity and to allow for the direction and analysis of a pair of programmers. Addi-

tionally, the CSP changes several aspects of PSP, particularly in the analysis and design

phases. The CSP also incorporates seven sets of instructions and templates directly, un-

changed from the PSP. These are referred to but are not included in this document. As

with the PSP, the CSP defines a framework for the collaborative pair to help their or-

ganization achieve a higher level of maturity.

Figure 1: CSP Evolutionary Learning Approach

Level CSP
0.0 Baseline / Current Process
0.1 Coding Standard

Size Measurement
Process Improvement Plan

1.0 Analysis (Use Case)
CRC Card Design Brainstorming
Design

1.1 Code Review
Design Reviews
Testing
Measurements

2.0 Size Estimating
Resource Estimating

2.1 Task Planning
Schedule Planning

Baseline

 Quality Management

 Project Management

18

3.2 CSP Definition

3.2.1 CSP Level 0: Collaborative Baseline

3.2.1.1 CSP Level 0.0

CSP Level 0.0 does not impose or recommend any additional process steps; the en-

gineers use their “natural” process. In Appendix B, Table 5 (page 106), Table 6 (page

107), and Table 7 (page 108) document Process, Planning, and Development scripts

which enumerate steps for the engineer to take. However, these steps are very general

and would have to be followed by any engineer who developed software. Examples of

these steps are: 1) Produce a design to meet the requirements; 2) Implement the de-

sign; 3) Compile the program.

The purpose of this level is to provide baseline measurements from which to com-

pare results of future process improvements. Therefore, the only addition to their

“natural” process is to record time and defect data about their development work. Table

11 - Table 14 (pages 113 - 116) are forms and instructions for recording this informa-

tion. The engineers must do their best to diligently record the amount of time they spent

on each phase of the development process and to record information about the defects

they remove during their review, compilation and testing phases.

The Postmortem script (Table 8 on page 110) prescribes the completion of the Pro-

ject Plan. First, prior to beginning development, the pair makes an overall estimate of

how long it will take to develop the product. The recorded time and defect data are

summarized in the Project Plan (Table 9 on page 111) for use in analyzing the pair’s

process and for making future estimates. The table easily facilitates the comparison

19

between how long the pair thought it would take to develop a product and how long it

actually took (by phase).

One other important thing happens at this level, particularly if the engineers have

never worked in pairs before – they jell as a team. Most programmers have been condi-

tioned to work individually – and switching to collaborative programming is certainly

an adjustment. Many engineers venture into their first pair programming experience

skeptical that they would actually benefit from collaborative work. They wonder about

coordinating schedules, the added communication that will be required, about adjusting

to the other’s working habits, programming style, and ego, and about disagreeing on as-

pects of the implementation.

In industry, this adjustment period has historically taken hours or days, depending

upon the individuals. In the university experiment run as part of this research, the stu-

dents generally adjusted after the first assignment, though some reported an even shorter

adjustment period. It doesn’t take many victorious, clean compiles or declarations of

“We just got through our test with no defects!” for the teams to celebrate their union –

and to feel as one jelled, collaborative team.

3.2.1.2 CSP Level 0.1

At the CSP Level 0.1, several small process improvements are made. The engineers

begin to follow a coding standard. Groups of individuals who follow a coding standard

can be expected to have similar coding styles. This is particularly beneficial for collabo-

rative pairs as each takes turns adding to and reviewing their partner’s code. It is also

advantageous for software maintenance when field support must read and understand

20

the code of many different programmers. (A sample C++ coding standard is docu-

mented in Table 23 on page 128).

Engineers also count and record their number of lines of code as a measure of soft-

ware size. To no avail, software engineers perpetually debate the best measure of

software size. While lines of code may be an imperfect measure of product size it is

satisfactory for meeting the goals of the CSP. When used in conjunction with a coding

standard, particular collaborative pairs can use the line of code measurement to compare

relative size of their various programs.

The Project Plan is updated to incorporate recording the line of code measurement.

Additionally, the estimate of development time is entered at the process phase (Plan-

ning, Design, Code, Compile, Test, Postmortem) level. Pairs estimate the proportion of

development time they expect to spend by phase by reviewing the historical data they

began recording while using CSP Level 0. The Project Plan and Postmortem (Table 18

- Table 20 on pages 121 - 124) are adjusted accordingly.

Lastly, after each program, pairs reflect on their process – what went well and what

didn’t go so well about the software development process they actually used for that

program – and record these observations in the Process Improvement Proposal (PIP).

The purpose of this document is to impress upon the pair what they should and should

not do in the future in order to be most effective. The PIP and the instructions for com-

pleting the PIP are in Table 21 and Table 22 (pages 126 - 127).

21

3.2.2 CSP Level 1: Collaborative Quality Management

Why spend all this time finding and fixing and fighting when you could
prevent the incident in the first place?
 [P.B Crosby in Quality is Free [1]]

Collaborative programmers get used to working in pairs and taking some very basic

measurements in CSP Level 0. The attention is turned toward introducing particular

activities to improve product quality in Level 1. “The goal of quality management in

the PSP is to find and remove all defects before the first compile [21];” CSP shares this

noble goal.

3.2.2.1 CSP Level 1.0

In Level 1.0, attention is focused on the first stages of the development process,

analysis and design. The analysis phase deals with understanding the problem, goals

and constraints of the program. [22] enumerates the goals of performing analysis:

• = To understand the problem that the eventual software system, if any,
should solve

• = To prompt relevant questions about the problem and the system
• = To provide a basis for answering questions about specific properties

of the problem and system
• = To decide what the system should do.
• = To decide what the system should not do.
• = To ascertain that the system will satisfy the needs of its users, and de-

fine customer acceptance criteria
• = To provide a basis for the development of the system

In the CSP, analysis is performed through the development of use cases [23] based

on the customer requirements. The use cases are documented using the UML Use Case

Model [24]. The first step in developing the use cases is to identify the actors, the peo-

ple or systems that are external to the system but act upon or with the system. Then, the

22

use cases themselves can be discovered. A use case is a sequence of transactions per-

formed by a system that yields a measurable result of values for a particular actor. A

use case typically represents major functionality that is complete from beginning to end.

 Through the identification of use cases, scenarios, which are used later in the process,

are identified. “A use case is an abstraction that describes all possible scenarios involv-

ing the described functionality. A scenario is an instance of a use case describing a

concrete set of events. . . Scenarios are used as examples for illustrating common cases -

- their focus in on understandability. Use cases are used to describe all possible cases --

their focus is on completeness [25].”

In the CSP, each use case is explored by completing a Use Cases Flow of Events

template [26] as shown in Table 28 (on page 135) in Appendix B. The completion of

the Flow of Events serves to clarify the engineer’s thoughts on what the system should

and should not do. The Use Case Model and Flow of Events are both very readable and

understandable by non-technical customers. They, therefore, can be shown to customers

to ascertain that the system meets the customer requirements. The development of these

artifacts leads to the early stages of design as relationships between the use cases are

explored. Therefore, the goals of analysis, as stated above, are achieved through the

creation of the Use Case Model and Use Case Flow of Events. In Appendix C, the re-

quirements for a small program are developed into a Use Case Model and Flow of

Events.

The Use Case Flow of Events is also highly beneficial for black box test case devel-

opment. Engineers can identify many paths through the flow of events and devise test

cases to validate the correctness of the program for that set of conditions. The “Alterna-

23

tive Flows” identified in the Flow of Events is very beneficial for identifying error con-

ditions which must be handled in the program and tested to ensure proper handling.

Once analysis is completed in the CSP, a CRC card brainstorming exercise is held

as a predecessor to high-level design. (CRC stands for Class, Responsibility, and Col-

laborator) The exercise is performed to facilitate the process of identifying the system's

objects and their public interfaces [27]. Index cards are used to identify classes, their

responsibilities, and which other classes they must collaborate with to perform their ser-

vices. A format of a typical CRC card is shown below in Figure 2. (Often the class

attributes are written on the back of the card.)

The scenarios identified by the use cases are “role played” using the cards – to en-

sure that the classes perform the necessary services to complete each scenario. It is best

to choose a set of use cases that look like they would touch a related set of classes.

(Sets of scenarios that touch different sets of classes should have their own CRC card

exercise. This segmentation allows for more manageable brainstorming sessions.)

Figure 2: CRC Card Format

Class Name

Main Class Responsibility (one sentence)

Responsibilities Collaborators

.

24

A CRC card session proceeds as follows. A particular scenario is chosen from a

use case (e.g. one particular flow through the use case flow of events). The engineers

role play what the code would need to do in order for that scenario to complete success-

fully. When a new class would need to be created to fulfill the requirements of the

scenario, a blank card is put on the table. The name and purpose of the class is written

on the card. Once classes are identified, any responsibility identified as part of the sce-

narios walkthrough is written down on the class’s card under the Responsibility section.

 If the class must collaborate with another class in order to complete its responsibility,

that class is listed across from the responsibility in the Collaborator column. A repre-

sentative set of scenarios must be role played. For each scenario role play, participants

point to or pick up cards that would be used to handle the responsibility if the classes

and responsibilities have already been defined and/or initiate the creation of new classes

and responsibilities.

It is expected that classes will be identified and later discarded during the course of

the brainstorming session. The exercise allows several design alternatives to be on the

table at one time. Classes that seem to be uneeded are pushed to the side of the table but

not discarded. “An unpopular initial design may turn out to be a popular later design, or

perhaps the final design is a small alternation of an initially rejected design. [28]”

Through this process, the engineers ensure that the classes have been well formu-

lated and that they have the necessary behavior-responsibility (via their methods) and

knowledge-responsibility (via their attributes) to handle a representative set of scenar-

ios. From the CRC card exercise the high-level/UML class design almost falls out –

because the classes have been identified as well as the required methods and attributes.

25

Formulating the official Object Model and associated interaction diagram is done as a

formalization of the CRC card exercise and serves as the high-level design.

Lastly, cyclic development is encouraged. It is recommended that once high-level

design and review are completed, the pair break their project into pieces that appear to

be between 100 and 300 lines of code. The pair should then iteratively perform low-

level design, code, review, compile and test for each of these increments. Future incre-

ments should be built upon the growing code base of past increments.

3.2.2.2 CSP Level 1.1

 For over 20 years, numerous studies have documented the benefits of reviews and

inspections for efficient defect removal (some selected references are [11, 29, 30, 31]).

At CSP Level 1.1, both design and code reviews are introduced. During these reviews,

the pair of programmers examines their own work products.

 Even with the non-driver performing constant reviews, the pair still needs to step

back from the computer and review their work against prescribed design and code re-

view checklists. Realistically, even with collaborative pairs, some work will be done

individually due to illness, time conflict, or by conscious choice. (For example many

pair programmers have found that rote, routine coding is more effectively done alone.)

Therefore, the CSP has two versions of the design review checklist (Table 37 and Table

38) and two versions of the code review checklist (Table 35 and Table 36) – one version

of each for individual work and one version of each for collaborative work. Work done

individually must be very carefully checked before being incorporated into the shared

code base. Therefore, the checklists for individual work are quite thorough. However,

26

work performed by both partners does not require as thorough a formal review because

the non-driver performs a constant review. Reviews of collaborative work focus on

overriding factors like “Does the design cover all items in the specification?” or “Did

we completely implement our design?” Reviews of individual work also check for syn-

tax and lower-level logic errors.

 Sample checklists can be found in Appendix B. Some items in the design review

checklists were taken from [32]. It must, however, be emphasized that these checklists

should be considered dynamic for each collaborative pair. If a pair never makes a par-

ticular mistake, this item should be taken off the checklist. Other errors the pair is prone

to making should be added to the checklist.

Level 1.1 also introduces black box, white box and automated regression testing

techniques. Initial black box test cases are written early, in the design stage. The phi-

losophy behind this is that if you diabolically think about “how can I break this code”

and write test cases to see if you have or not, you will design and code in order to pass

your own test cases. Also, the design phase is a relatively calm, thoughtful phase of de-

velopment, conducive to thinking clearly and thoroughly about test cases. When a

project is in the chaotic throes of testing with a deadline looming, the development of a

complete set of test cases is often compromised. For each test case, the Test Case Tem-

plate (see Table 39 on page 151 in Appendix B) is completed. Additional information

about the black box test cases is added, as more implementation issues are resolved.

As is done in Extreme Programming, white box unit test cases are incrementally

written and added to an automated regression test suite prior to writing the actual code.

Writing unit test cases before coding allows you to verify that you really understand the

27

requirements and can even help clarify implementation issues. Ron Jeffries, one of the

Extreme Programming principles discusses Extreme Testing [33]:

We need to be sure of two things: the new capability works, and we ha-
ven’t broken anything that used to work. And that requires testing.
There are two things to be sure of, so Extreme Testing specifies two key
actions:

1. To be sure that new features work, write Unit Tests for every feature.
 Write them before you release the code, preferably before you even write
it. Save all the unit tests for the whole system.

2. To be sure that nothing else is broken, run all the Unit Tests in the
entire system before any code is released – and ensure that those tests
run at 100 percent!

Let me emphasize that last point. Whenever Extreme Programmers re-
lease any code at all, every unit test in the entire system must be
running at 100%! That shows us not just that the new feature works,
but that the changes haven’t broken anything anywhere.

This iterative process of “design-a-little code-a-little test-a-little” allows develop-

ment to proceed with confidence that code is correct. It also improves defect removal

efficiency because if a test case fails, the engineer can be assured that the new code

caused the fault. “Software release goes much faster when you run the tests before

every release, because if anything breaks you know almost exactly where the problem is.

 Developers who work with tests get to spend more time working with new code, and

less time trying to find obscure bugs in old code [33].”

Appendix E has a sample design and example for the automated regression tester. A

philosophy behind the tester is that it is tedious and error-prone to visually inspect pro-

gram output to see if tests passed. Testing is then accomplished by formulating tests as

collections of Boolean expressions and having the test program report a summary of

passes and failures. “You can’t have comprehensive repeatable tests if you have to

28

manually check the results. Have a testing facility to set up and run the tests, check the

results, and report them [33].”

Additionally, Table 41 on page 153 in Appendix B has a test coverage script that

helps with the review of completeness of the both black box and white box test case

sets.

The last thing added to the Level 1.1 is measurements, which examine the effective-

ness of the quality initiatives of Level 1. The measurements mirror the measurements of

the Personal Software Process [11]. Beginning with Level 0.0, engineers record data on

the time they spend and the defects they remove. In this level this data is turned into

significantly more information in order to provide measurement-based feedback. This

information can provide critical feedback so they can effectively critique their own work

and adjust their pair-process. Each of the measurements that are introduced in Level 1.1

is briefly explained:

Yield: Yield is the percentage of defects that were in a program during a particular

phase that were removed during that phase. A high yield is good; a low yield is poor.

The yield measurements demonstrate how good a “filter” for removing defects a par-

ticular phase was. Yield can be measured because in the CSP defect recording log

engineers record their best guess at the phase the defect was injected and the phase it

was removed. Process yield is the percent of total defects that were removed prior to

the first compile:

29

Equation 1: Process Yield

Process Yield = 100 * (defects found before the first compile)
 Total defects found

With practice and experience, an 80% process yield is an excellent goal to strive for

[11].

Cost of Quality (COQ): A measure of the amount of time spent to achieve a quality

product. COQ has two components. One component of COQ is failure costs or the cost

to diagnose a failure and to make necessary repairs.

Equation 2: Failure Cost of Quality

Failure Cost of Quality = 100 * (compile time + test time) / (total development time)

Another component of COQ is appraisal costs. Appraisal costs are the costs to

evaluate a product to determine its quality level and can be calculated:

Equation 3: Appraisal Cost of Quality

Appraisal Cost of Quality = 100 * (design review time + code review time) / (total de-

velopment time).

These two components are summed to get the Total COQ. The Appraisal to Failure

Cost ratio (A/FR ratio) is also calculated from these measures.

30

Equation 4: Appraisal to Failure Ratio (A/FR)

A/FR = (Appraisal COQ) / (Failure COQ)

The A/FR ratio is a good indication of the “degree to which the process attempts to

eliminate defects prior to compiling and test phases [11].” A high A/FR is associated

with low test defects.

Defect Removal Efficiency: This is a measure of the number of defects that are re-

moved per hour in each defect removal phase. The measure is used to indicate the

relative defect removal efficiency of each phase. It is calculated by dividing the total

number of defects found during a phase by the amount of time spent in that phase.

Defect Removal Leverage: This measure is used to directly compare the relative ef-

fectiveness of the defect removal phases. It is a ratio of the above Defect Removal

Efficiency in any two phases. It is most often the ratio relative to the test phase as an

indication of how much more efficient a pre-test phase is at removing defects when

comparing with the test phase.

It should be noted that these measurements are tedious to calculate. Tool support to

calculate these measurements from raw time and defect data is absolutely essential for

data accuracy and in order for the methodology to be practical. Various tools have been

developed and used to perform these calculations. The SEI provides an Excel spread-

sheet program to track the data and perform the calculations. The students involved in

this research used a web-based tool, which stored the data on an NT server. The stu-

dents could then use the tool in the university laboratories, from their workplace, or

31

from home and could effortlessly combine their date with their partners when they chose

to work separately. The web-based tool was developed as part of this research.

3.2.3 CSP Level 2: Collaborative Project Management

Level 2 is concerned with adding sound project management activities to the col-

laborative team’s process. “Project management includes the oversight activities that

ensure the delivery of a high-quality system on time and within budget [25].” The pro-

ject management techniques of the PSP are essentially unchanged in the CSP. They

easily apply to collaborators as well as individuals. However, as discussed in Section

3.3, their position in the evolutionary learning approach has been adjusted.

3.2.3.1 CSP Level 2.0

Often product size and resource estimates are developed via guesses and/or gut

feels. However, using the methods of Level 2.0, one can systematically answer the

question software development managers perpetually ask, similar to, “Can you be done

with this project by the end of March? The customer wants it by March.” It raises the

engineer’s ability to answer this question from a “probably” answer to an answer such

as “I can tell you with 90% confidence that this project will be between 4,000 and 4,500

lines of code. Based on my own personal historical data, this should take me about 100

hours – so I feel very comfortable with a March commitment.” In short, the method

helps engineers make commitments they can meet.

The first step in formulating the commitment is the development of a high-level

conceptual design. “This design establishes a preliminary design approach and names

the expected product objects and their functions [11].” The idea is not to spend too

32

much time on the conceptual design – balancing the need to postulate the objects that

will be needed without devising the high-level design. It is this conceptual design that

will be used to determine the resource estimate/commitment required to build the prod-

uct. Decisions on whether to proceed or not with the product will be based on these

estimates and commitments. Further analysis and design activities will then refine this

design if it is decided that the product will be developed.

The PROBE method is used to systematically develop a product size (lines of code)

and resource estimate using sound mathematical methods. PROBE stands for PROxy-

Based Estimating. First, the PROBE method recognizes the need to start the estimation

process with “some proxy that relates product size to the functions the estimator can

visualize and describe [11].” For object-oriented design, the objects identified in the

conceptual design are used as the proxy. During early, conceptual design, the engineers

can begin to visualize the objects that will be included in their design. An estimate of

the number of lines of code per object estimate is made via projecting the quantity of

methods each class will likely need and personal historical data on object size. This is a

typical engineering estimation method in which the sum of estimates of the components

is found to be more accurate than a single estimate of the whole.

Statistical linear regression analysis is then performed on the engineer’s historical

database of past projects to determine the relationships between past estimates, actual

size, and actual effort. These relationships and the estimated object size (discussed

above) are used to forecast the projected actual size and resource requirements for the

current project. Finally, a prediction interval is calculated to give the likely range

33

around the estimate based on the variance in the historical data. Engineers can choose

their external commitment from the range of values in the calculated prediction interval.

A few additional relevant measurements are added to the Project Plan in Level 2.0.

First, the LOC/Hour measurement for the current program and all programs to date is

added to the summary section. Additionally, the Cost-Performance Index (CPI) is

added to indicate the degree to which cost commitments are being met. CPI is the ratio

of the planned time to date divided by the actual time to date for all programs. A CPI of

1.0 or greater is desirable. A CPI less than 1.0 indicates that cost commitments are not

being met.

As with the measurements of Level 1.1, automation of the PROBE method and the

calculation of the additional measurements are essential for making the method practical

and accessible to busy software engineers.

3.2.3.2 CSP Level 2.1

Performing the prescribed activities of Level 2.1 gives engineers an orderly plan for

performing the required tasks to successfully complete a project and a framework for

determining and communicating the status of their work. The engineer implements task

and schedule planning and tracking via the earned value method.

A particular task’s earned value is based on the percentage of the total
planned project effort that the task will take. As tasks are completed, the
task’s planned value becomes earned value for the project. The project’s
earned value then becomes an indicator of the percentage of completed
work. When tracked week by week, the project’s earned value can be
compared to its planned value to determine status, to estimate rate of
progress, and to project the completion date for the project. [21]

For the Task Planning, the engineer enumerates a list of the tasks needed to com-

plete the project. The engineer then assigns a projection of the amount of time it would

34

take to complete the task (generally a percentage of the total resource estimate devel-

oped in Level 2.0). Each task is assigned an earned value based on the percentage of

total time the task is projected to take. The engineer earned this value by completing the

task. The engineer can easily communicate their completion status based on the Task

Planning results.

The Schedule Planning is used to determine the status of how much time the have

spent on the project. The resource estimate from Level 2.0 is divided into time com-

mitments for each week of the project. The time entered beginning in Level 0.0 can be

used to compare the time commitment of the Schedule Planning with actual time dedi-

cated to the project.

Note: In the CSP, the PROBE instructions, Size Estimating Template, Task Plan-

ning Template, and Schedule Planning Template are identical to that of the PSP.

Therefore, these are not included in Appendix B. For these instructions and templates,

refer to Appendix C in [11].

3.3 Differences Between CSP and PSP

Obviously the largest difference between PSP and CSP is the incorporation of pair

programming. Essentially every script, template, and form has been adjusted to incor-

porate the work of two and to specifically leverage the power of two working together.

Table 1 below summarizes the differences of the software engineering techniques

introduced in each level. Two major differences are noted. First, the Quality Manage-

ment and Project Management phases are swapped and reordered in the CSP. This was

done to place additional focus on quality management early in the process, while accu-

35

mulating more historical data that can be used for estimation in CSP Level 2. Addition-

ally, cyclic development is encouraged through levels 1 and 2 in the CSP making the

equivalent of PSP Level 3 unnecessary.

There are really two levels of cyclic development involved. CSP encourages “mi-

cro-iteration” whereby a particular pair of programmers iterates while developing the

segment of the project assigned to them. They analyze and develop and review a high-

level design for their piece of the program. Then, the engineers are encouraged to di-

vide up their design into their own micro-increments and cycle through low-level

design, code, review, compile, and test for each. Another level of cyclic development is

“macro-iteration” whereby a whole development team schedules the development of the

whole project in large increments. This macro-iteration is not addressed by the CSP. It

would need to be addressed by a larger team process, such as the Team Software Proc-

ess [34].

36

Table 1: Differences between PSP and CSP Levels

Level PSP CSP

0.0 Baseline / Current Process Baseline / Current Process

0.1 Coding Standard
Size Measurement
Process Improvement Proposal

Coding Standard
Size Measurement
Process Improvement Proposal

1.0 Size Estimating
Test Reports

Analysis (Use Cases)
CRC Cards
Design

1.1 Task Planning
Schedule Planning

Code Review
Design Reviews
Test Case Development
Measurements

2.0 Code Review
Design Review
Measurements I

Size Estimating
Resource Estimating

2.1 Design Templates
Measurements II

Task Planning
Schedule Planning

3.0 Cyclic Development (Removed)

Additionally, more recent Object-Oriented Analysis and Design techniques were in-

corporated into the CSP. Use Cases, CRC Cards and class design are introduced in

Level 1.0. Analysis was addressed in the PSP in the development of an Operational

Scenario Template in which the system’s operational behavior was described via scenar-

ios. Use cases are a more recent, thorough, and higher-level version of the Operational

Scenario Template. PSP design involved the development of the Functional Specifica-

tion Template, State Specification Template and the Logic Specification Template.

These all involve formal and semi-formal notation. While powerful techniques, practic-

37

ing programmers generally do not use formal notation, unless mandated by manage-

ment. These were replaced with higher level UML class diagrams developed with the

help of CRC card brainstorming.

Inspired by the automated testing techniques of XP, additional testing focus was in-

corporated into Level 1.1. Black box test cases are written during the design phase

using a Test Case Template. White box and additional black box test cases are written

prior to actually coding new functions, and these test cases are added to an automated

regression test suite. Overall test coverage is checked against a Test Coverage Check-

list.

“Lesson 1 about data collection is you may have to sacrifice some data accuracy to

make data collection easier [31].” Many engineers complain about the amount of data

they must record as part of PSP. Several fields were removed from the Defect Re-

cording Log to reduce the tedium of entering defect data. Additionally, engineers are

not asked to estimate defects prior to code development. Several of the forms were

simplified.

CHAPTER 4

QUALITATIVE RESULTS

A formal experiment was run at the University of Utah to validate the effectiveness

of the Collaborative Software Process. In the summer of 1999, a web programming

class was taught to 20 undergraduates. The students formed ten pairs and worked col-

laboratively using the CSP for all assignments. The purpose of the class was to pilot the

CSP before running a formal experiment.

The official experiment was run in the fall of 1999. The class consisted of 41 jun-

iors and seniors. (It is important to note that by the time these students participated in

this class and this experiment, they had significant programming experience in the form

of internships and large class projects – such as writing compilers, portions of operating

systems, and interpreters.) They learned both the PSP and the CSP and coded in C++, a

language they had used for between two and three years. One third of the class worked

individually while the rest worked in collaborative pairs. The individuals used the PSP;

the pairs used the CSP. Both groups were asked to write the same programs so their

results could be directly compared. The students completed six assignments over a pe-

riod of seven weeks. The first and last assignments were pre-test and post-test elements

of the formal experiment in order to study the performance of an individual programmer

versus the performance of the same individual as a collaborative programmer. The ex-

perimental design and more details about these classes can be found in Appendix A.

39

The qualitative results discussed in this chapter were obtained through observation,

personal experiences, discussions, and from written information obtained from the stu-

dents involved in the experiment outlined in Appendix A and from professional pair

programmers. The results center on explaining why collaborative programming is bene-

ficial (beyond the economic advantages, which will be discussed in Chapter 5) and on

sharing success factors for effective collaboration. (Much of this information was re-

ported in [35-37].)

4.1 Why Collaborative Programming is Beneficial

4.1.1 Pair-Pressure

Pair programmers put a positive form of “pair-pressure” on each other. The

programmers admit to working harder and smarter on programs because they do not

want to let their partner down. Also, when they meet with their partner they both work

very intensively because they are highly motivated to complete the task at hand during

the session. “Two people working together in a pair treat their shared time as more

valuable. They tend to cut phone calls short; they don't check e-mail messages or

favorite Web pages; they don't waste each others time. [6]“ (Contrast that with the pro-

ductivity and quality expected from one student who admitted, “When I work on

assignments individually, I can watch TV while I work.”) Summarized by a pair pro-

grammer, “It takes more effort because the pace is forced by the other person all the

time; neither person feels they can slack off.” As each keeps his or her partner focused

and on-task, tremendous productivity gains and quality improvements are realized.

40

As reported in [36], a class was taught at the University of Utah in which all stu-

dents programmed collaboratively. These students consistently turned in their

assignments on time; each of the ten collaborative groups turned in eight projects and all

80 were on time. Additionally, all projects were of very high quality. The average

grade on all 80 assignments was 98%. (A teaching assistant, who had no interest in the

research results, did all the project grading.)

This same group of students did not perform so flawlessly on their individual work.

The students had one in-class midterm exam, one take-home final exam, and one paper

evaluating the collaborative process. The average on these items was 78.1% with a

standard deviation of 20.91. Again, the average on the collaborative aspects of the class

was 97.9% with a standard deviation of 6.74. The students performed much more con-

sistently and with higher quality in pairs than they did individually – even the less

motivated students performed well on the programming projects. Through the students’

weekly journal entries, the students communicated that this performance was not due to

one person carrying the load of two – except on one of the 80 assignments. In an anony-

mous survey on the last day of class, the students were queried about the reasons for the

performance differences of the projects vs. the exams. Overwhelmingly, the students

responded, “It was the pair-pressure – I could not let my partner down.”

Another benefit of pair pressure is improved adherence to procedures and standards.

 Each partner is expecting the other to follow the prescribed development practices.

“With your partner watching, though, chances are that even if you feel like blowing off

one of these practices, your partner won’t . . . the chances of ignoring your commitment

41

to the rest of the team is much smaller in pairs then it is when you are working alone

[5]”

4.1.2 Pair-Think

As reported in Chapter 2, Nick Flor, a Cognitive Science MS student, studied a pair

of collaborative programmers. Flor recorded via video and audiotape their exchanges

and progress on their task. A subset of these exchanges is discussed in [17] in order to

correlate specific behaviors with known distributed cognition theories. One of these

theories is “Searching Through Larger Spaces of Alternatives” demonstrates pair-think.

A system with multiple actors possesses greater potential for the genera-
tion of more diverse plans for at least three reasons: (1) the actors bring
different prior experiences to the task; (2) they may have different access
to task relevant information; (3) they stand in different relationships to
the problem by virtue of their functional roles. . . An important conse-
quence of the attempt to share goals and plans is that when they are in
conflict, the programmers must overtly negotiate a shared course of ac-
tion. In doing so, they explore a larger number of alternatives than a
single programmer alone might do. This reduces the chances of select-
ing a bad plan. [17]

A student pair-programmer confirms Flor’s findings, “We often came up with dif-

ferent ideas about how the design should go and the result of arguing over which one

was better often led to a truly superior hybrid design.”

Flor also reports,

Because of the nature of ill-structured tasks, there is often insufficient in-
formation for selecting the right plan. Thus there is the potential for an
incorrect or less efficient course of action to be adopted. Fortunately,
refuted plans do not disappear. The process of negotiating plans dis-
tributes them between the actors. If at a later time, it is discovered that
the current course of action is wrong, that plan may later be independ-
ently adopted by an actor who is not necessarily its originator. [17]

42

4.1.3 Pair-Relaying

Literature on collaboration overflows with examples of remarkable achievements in

many fields that could have only occurred with collaboration. One author contends we

are living in a world in which technological complexity “increases at an accelerating

rate [which] offers fewer and fewer arenas in which individual action suffices. [38].”

Software has become the driving force behind most new technologies. But the engineer-

ing of software is becoming increasingly complicated. A software engineer must

balance a variety of competing factors, including functionality, quality, performance,

safety, usability, time to market, and cost. Moreover, the size of software systems that

are being built is rapidly growing.

Related to pair-think, collaborative teams consistently report that together they can

evolve solutions to unruly or seemingly impossible problems. "Problem solving" refers

to when the two programmers are puzzled as to why something doesn't work as ex-

pected, or simply can't figure out how to go forward. Pair relaying is a name for the

effect of having two people working to resolve a problem together in the exact manner

Wagstaff describes below.

There were times we felt that we would have given up except that we
“tag teamed.” I’d be on the ropes and I’d describe the problem in such
a way that he had a valuable insight. Then he’d fight on as long as he
could and stop . . . then I’d have an insight . . . and so on. I suppose oth-
ers would call it brainstorming, but it feels different to me.

 [-David Wagstaff, software engineer, Salt Lake City]

Practitioners describe contributing their knowledge to the best of their abilities, in

turn. They share their knowledge and energy (and also brainstorming) in turn, chipping

steadily away at the problem, evolving a solution to the problem.

43

Additionally, pairs report that in their problem solving, they do not spend as much

time lost in a particular problem or fix.

One student noted:

One problem with single programming is that you can forget what you
are doing and easily get wrapped in a few lines of code, losing the big
picture. Your partner is able to constantly review what you do, making
sure that it is in line with the product design. He/she can also make sure
that you are not making the problem too difficult. Many times, these two
items alone can waste a lot of time.

Combining pair-think and pair-relaying is powerful. One student wrote, "I have

found that, after working with a partner, if I go back to working alone, it is like part of

my mind is gone. I find myself getting confused about things.”

4.1.4 Pair-Reviews

Inspections were introduced more than twenty years ago as a cost-effective means of

detecting and removing defects from software. Results [29] from empirical studies con-

sistently profess the effectiveness of reviews. Even still, most programmers do not find

inspections enjoyable or satisfying. As a result, inspections are often not done if not

mandated, and many inspections are held with unprepared inspectors.

Despite a consistent stream of positive findings over 20 years, industry
adoption of inspection appears to remain quite low, although no definite
data exists. For example, an informal USENET survey we conducted
found that 80% of 90 respondents practiced inspection irregularly or not
at all [39].

The theory on why inspections are effective is based on the prominent knowledge

that the earlier a defect is found in a product, the cheaper it is to fix the defect. Many

sources, including [40] state that it is ten times more expensive to remove a defect for

each additional process step.

44

Intuitively, it is easy to understand why this exponential cost increase occurs. In a

review, the programmer looks directly at the problem that was just identified and con-

siders alternatives and fixes. Once the product enters test or is delivered to customer(s),

the programmer or field maintenance team must work to translate the symptom (e.g. the

answer is wrong or the program crashed) back to the problem (which exact line(s) of

code caused the symptom). It is easy to see why the translation of the symptom back to

the problem would cost exponentially more than direct problem identification.

With pair programming, this problem identification occurs on a minute-by-minute

basis. “The human eye has an almost infinite capacity for not seeing what it does not

want to see . . . Programmers, if left to their own devices, will ignore the most glaring

errors in their output – errors that anyone else can see in an instant [41].” With pair-

programming, “four eyeballs are better than two,” and a momentous number of defects

are prevented, removed right from the start. These continual reviews outperform tradi-

tional, formal reviews in their defect removal speed. Additionally, they also eliminate

the programmer’s distaste for reviews so that effective reviews are actually performed.

4.1.5 Debugging by Explaining

Every person has experienced in some context that some problems can be resolved

by explaining them to another.

. . . effective technique is to explain your code to someone else. This will
often cause you to explain the bug to yourself. Sometimes it takes no
more than a few sentences, followed by an embarassed "Never mind; I
see what's wrong. Sorry to bother you." This works remarkably well;
you can even use non-programmers as listeners. One university com-
puter center kept a teddy bear near the help desk. Students with

45

mysterious bugs were required to explain them to the teddy bear before
they could speak to a human counselor. [42]

Students at the University of Utah, similarly, noted how surprised they were that it

helped them to understand things when they had to explain it to another. As one student

said,

When I explained an idea to my partner, I concentrated on what I was
saying, and carefully made things clear and logical because I did not
want to confuse my partner and I wanted him to understand what I was
talking about. It helped me better understand the problem I was ad-
dressing. It also helped me discover some mistakes I had made but did
not notice before I talked with my partner.

4.1.6 Pair-Learning

The continuous reviews of collaborative programming create a unique educational

capability, whereby the pairs are endlessly learning from each other. “The process of

analyzing and critiquing software artifacts produced by others is a potent method for

learning about languages, application domains, and so forth [39].” Earlier, it was stated

that the continuous reviews of collaborative programming were more effective than tra-

ditional review because of their optimum defect removal efficiency. To further this, the

learning that transcends in these continual reviews prevents future defects from ever oc-

curring – and defect prevention is more efficient than any form of defect removal. Says

Capers Jones, chairman of Software Productivity Research,

It is an interesting fact that formal design and code inspections, which
are currently the most effective defect removal technique, also have a
major role in defect prevention. Programmers and designers who par-
ticipate in reviews and inspections tend to avoid making the mistakes
which were noted during the inspection sessions. [43]

Phillip M. Johnson, a professor at the University of Hawaii, refutes traditional

inspections heuristic “Raise issues, don’t resolve them.” He speaks, instead, in favor of

46

the educational opportunity that abounds in code inspections. “A strong argument can

be made that overall software quality is affected far more profoundly by improvements

to developer skills, which reduces future defect creation, than by simply removing de-

fects from current individual documents [39].” The continuous reviews of collaborative

programming, in which both partners ceaselessly work to identify and resolve problems,

affords both optimum defect removal efficiency and the development of defect preven-

tion skills.

4.1.6.1 Pair-Learning in the Classroom

 Larry Constantine, whose observation of P. J. Plaugher’s software company were

reported in Chapter 2, noted that “. . . for language learning, there seems to be an opti-

mum number of students per terminal. It’s not one . . . one student working alone

generally learns the language significantly more slowly than when paired up with a part-

ner [19].” A class taught during Summer Semester at the University of Utah set out to

study pair programming in an educational setting in which programming language learn-

ing takes place. (Details on this class can be found in Appendix A.) The results of the

class, in which collaborative programming proved beneficial to both students and teach-

ing staff, will be discussed.

 Despite the fact that some students get better grades than others, classrooms are

unique in that skill level and experience between students are relatively equivalent when

compared with differences found in industry. As a result, the students have a mutual

learning relationship rather than a novice-expert relationship. This relationship proved

fruitful for the students. The students learned several web programming languages dur-

47

ing the (shorter) summer semester. However, the students were able to easily tackle all

programming projects, which was very satisfying for them. When one partner did not

know/understand something, the other almost always did and could provide immediate

assistance. In a survey at the end of the semester, 74% of the students noted, “Between

my partner and I, we could figure everything out.”

 They also found it a very efficient working arrangement. When they found them-

selves needing to use new or unfamiliar semantics or syntax, the non-driver has the job

of flipping through resource materials. During this time, the driver might make progress

on a more familiar area of the code. Together, defect removal was also much more effi-

cient, which significantly reduced the frustration level of debugging they had been

accustomed to. Most significantly, 84% of the class agreed with the statement “I

learned faster and better because I was always working with a partner.”

Collaboration also makes the instructor feel more positive about the class. Their

students are happier, and the assignments are handed in on-time and are of higher qual-

ity. There is one additional very positive effect for the teaching staff -- less questions!

When one partner did not know/understand something, the other almost always did.

Between the two of them, they could tackle anything, which made them much less reli-

ant on the teaching staff. Email questions were almost non-existent. Lab consultation

hours were very calm, even the day the projects were due.

Naturally, though, pair programming requires the teaching staff to deal with obvious

workload imbalances between the partners that they would not have to deal with if each

worked individually. Normal two-person team projects are divided into “my” part and

“your” part. However, with collaborative programming, the entire project is “ours.”

48

Because of this, there was much more of a “collective code ownership” feeling and far

less partner problems than have been observed in other classes in which students

worked in traditional two-person teams.

(Note: much of the information contained in this Pair-Learning in the Classroom

section had been previously reported in [36].)

4.1.6.2 Pair-Learning in the Workplace

In the workplace, skills levels are more variable than in a classroom. The majority

of this section will address the knowledge transferability experienced with collaborative

programming. This is not to say that the expert does not benefit from the arrangement,

even when paired with a novice. Consider this experience of a senior programmer:

I was sitting with one of the least-experienced developers, working on
some fairly straightforward task. Frankly, I was thinking to myself that
with my great skill in Smalltalk, I would soon be teaching this young
programmer how it’s really done.

We hadn’t been programming more than a few minutes when the young-
ster asked me why I was doing what I was doing. Sure enough, I was off
on a bad track. I went another way. Then the whippersnapper reminded
me of the correct method name for whatever I was mistyping at the time.
Pretty soon, he was suggesting what I should do next, meanwhile calling
out my every formatting error and syntax mistake.

I’m not entirely stupid. I noticed very quickly that this most junior of
programmers was actually helping me! Me! Can you believe it? Me!
That has been my experience every time thereafter, in pair-
programming. Having a partner makes me a better programmer.

 [-Ron Jeffries, from [35]]

Learning happens in a very tight apprenticeship mode. From moment to moment,

the partners can take turns being the teacher and the taught, the novice and the expert.

Even unspoken skills and habits cross partners. [44] discusses apprenticeship case stud-

49

ies. These studies range from tailors to flag signalmen in the U.S. Navy to butchers in

modern supermarkets.

The book points out the importance of the novice working in "line of sight" of the

expert. Expertise is transmitted, in part, through the ongoing visual (and auditory) field.

 They describe successful apprenticeship learning in both tailors and Navy signalmen

where “line of sight” is available. The beginner explicitly picks up skills from hearing

and/or seeing the expert.

Apprentice butchers, however, do not have line of sight access to their local expert.

The beginners are given simple cuts to perform, but do not have a way to learn how to

do more difficult cuts, which were being done by the senior butcher in another room.

The authors present this as a situation in which apprenticeship learning does not effec-

tively happen.

Most project programming environments match the butcher situation, not the tailor

or signalmen situation. The novice programmer generally sits in their workspace work-

ing on simple code; the expert sits in their own workspace creating complex code and

making architectural decisions. Pair programming is a far superior apprenticeship

model (though it has already been stated that the expert, too, learns from the novice.)

In industry, pairs are not usually assigned to each other on a long-term basis. Often,

pairs change day-by-day, giving additional opportunity for learning. [45] contains a sec-

tion called “I heard it through the Pairvine” which discusses this phenomenon – when

one person learns a new trick with a tool, or a new innovation or snafu, it tends to

spread through the whole group within a couple of days with no deliberate effort.

50

When an important new bit of information is learned by someone on the
team, it is like putting a drop of dye in the water. Because of the pairs
switching around all the time, the information rapidly diffuses through-
out the team just as the dye spreads throughout the pool. Unlike the dye,
however, the information becomes richer and more intense as it spreads
and is enriched by the experience and insight of everyone on the team.
[5]

4.1.7 Team Building

Programming teams in industry in which pair programming was practices report sig-

nificantly improved teamwork among the members. If the pair can work together, then

they learn ways to communicate more easily and they communicate more often. In

many cases, these industrial teams continually rotate partners; two people do not work

together for more than a short increment. This increases the overall information flow

and team jelling farther.

Anecdotally, pair-programming also tends to improve the team’s hustle, as described

in [46]:

A baseball manager recognizes a nonphysical talent, hustle, as an essen-
tial gift of great players and great teams. It is the characteristic of
running faster than necessary, moving sooner than necessary, trying
harder than necessary. It is essential for great programming teams too.
Hustle provides the cushion, the reserve capacity, that enables a team to
cope with routine mishaps, to anticipate and forefend minor calamities.

4.1.8 Project Risk

With pair programming, the risk from losing key programmers is reduced, because

there are multiple people familiar with each part of the system. If a pair works together

consistently, then there are two familiar with this particular area of the program. If the

pairs rotate, as discussed above, many people can be familiar with each part. A com-

mon informal metric (invented by Jim Coplien of AT&T Bell Labs) is referred to as the

51

"truck number." "How many or few people would have to be hit by a truck (or quit) be-

fore the project is incapacitated?" The worst answer is "one." Having knowledge

dispersed across the team increases the truck number, and project safety.

4.1.9 Maslow’s Needs Hierarchy

In the early 1950’s Abraham Harold Maslow postulated that people will work to sat-

isfy their own needs, but in a hierarchical order of importance. Each lower level must

be satisfied at least partially before the person will be motivated to satisfy a higher-level

need [47]. Maslow’s hierarchy underlies many management approaches to quality mo-

tivation [10]. The hierarchy is defined below in Figure 3.

Figure 3: Maslow’s Hierarchy of Needs

Belongingness and Love Needs

Esteem Needs

Self-
Actualization
Needs
Safety, Security Needs

Physiological Needs (Food, Water)

52

 Contrast individual and collaborative programming and Maslow’s assertion that peo-

ple will work to satisfy their own needs, but in a hierarchical order of importance. If

both provide stable employment, they equally satisfy the basic human Physiological,

Safety and Security needs at the lowest two levels. However, the social interaction of

collaborative programming is attractive to engineers because it better serves the next

two higher levels of basic human needs. The Belonging and Love needs causes people

to “hunger for relations with people in general – for a place in the group or the family

[47].” Additionally, essentially all engineers earn the respect of their partners. Indeed,

it has been demonstrated that even novice programmers are able to help expert pro-

grammers, giving the thrill of contribution and confidence. This respect helps satisfy

the Esteem need, which professes the “need or desire . . . for the esteem of others. The

most stable and therefore most healthy self-esteem is based on deserved respect from

others [47].” Only when the lower four levels are satisfied to a great degree is the fifth

and highest level, Self-Actualization, more satisfying. This highest level is the desire

for an “individual to do what he or she, individually, is fitted for. Musicians must make

music, artists must paint . . .”

Matthias Felleisen of Rice University refers to solo programmers as “lonely macho

warriors battling against a sea of bits and bytes.” This description reflects that solo pro-

gramming may satisfy an engineers self-actualization needs, but neglect their more basic

needs for belonging and the respect of their partner and teammate.

(Note: much of the information contained in the Pair-Learning in the Workplace,

Team Building, and Project Risk sections had been previously reported in [Cockburn,

submitted for consideration #58].)

53

4.2 Success Factors for Effective Collaboration

Most programmers are long conditioned to working alone and often initially resist

the transition to pair programming. Ultimately, most make this transition with great

success. This purpose of this section is to document proven strategies for aiding pro-

grammers in becoming effective pair programmers. (Much of the information in this

section has previously been reported in [48].)

4.2.1 Pair-Jelling

 The pair must cease considering themselves as a two-programmer team and must

start considering themselves as one coherent, intelligent organism working with one

mind. Tom DeMarco shares his inspiring view on this type of union.

A jelled team is a group of people so strongly knit that the whole is
greater than the sum of the parts. The production of such a team is
greater than that of the same people working in unjelled form. Just as
important, the enjoyment that people derive from their work is greater
than what you'd expect given the nature of the work itself. In some
cases, jelled teams working on assignments that others would declare
downright dull have a simply marvelous time. … Once a team begins to
jell, the probability of success goes up dramatically. The team can be-
come almost unstoppable, a juggernaut for success [49].

4.2.2 Project Ownership

In pair programming, two programmers are assigned to jointly produce one artifact

(design, algorithm, code, etc.). The two programmers are jointly responsible for every

aspect of this artifact. One person is typing or writing, the other is continually review-

ing the work. But, both are equal participants in the process. Both partners own

everything.

54

With pair programming, the two programmers become one. There should be no

competition between the two; both must work for a singular purpose, as if the artifact

was produced by a singular good mind. Blame for problems or defects should never be

placed on either partner. The pair needs to trust each other’s judgment and each other’s

loyalty to the team.

4.2.3 Mutual and Self-Respect

 Pair programmers indicate that it is very difficult to work with someone who has a

great insecurity or anxiety about their programming skills. They tend to be defensive or

do not contribute to the team. Programmers with such insecurity should view pair pro-

gramming as a means to improve their skill by constantly watching and obtaining

feedback from another.

Also, negative thoughts such as “I’m an awesome programmer, and I’m paired up

with a total loser” should also be rejected, lest the collaborative relationship be de-

stroyed. None of us, no matter how skilled, is infallible and above the input of another.

John von Neumann, the great mathematician and creator of the von Neumann computer

architecture, recognized his own inadequacies and continuously asked others to review

his work. “And indeed, there can be no doubt of von Neumann's genius. His very abil-

ity to realize his human limitation put him head and shoulders above the average

programmer today . . . Average people can be trained to accept their humanity -- their

inability to function like a machine -- and to value it and work with others so as to keep

it under the kind of control needed if programming is to be successful [41].”

55

4.2.4 Ego-Less Programming

“Ego-less programming,” an idea surfaced by Gerald Weinberg in The Psychology

of Computer Programming [41] a quarter of a century ago, is essential for effective pair

programming. According to the pair programming survey (see Appendix D), excess ego

can manifest itself in two ways, both damaging the collaborative relationship. First,

having a “my way or the highway” attitude can prevent the programmer from consider-

ing others ideas. Secondly, excess ego can cause a programmer to be defensive when

receiving criticism or to view this criticism as mistrust.

In The Psychology of Computer Programming [41], a true scenario about a pro-

grammer seeking review of the code he produced is discussed. On this particular “bad

programming” day, this individual ego-lessly laughed because his reviewer found

seventeen bugs in thirteen statements. However, after fixing these defects, this code

performed flawlessly during test and in production. How different this outcome might

have been had this programmer been too proud to accept the input of others or had

viewed this input as an indication of his inadequacies. Having another to continuously

and objectively review design and coding is a very beneficial aspect of pair program-

ming. “The human eye has an almost infinite capacity for not seeing what it does not

want to see . . . Programmers, if left to their own devices, will ignore the most glaring

errors in their output -- errors that anyone else can see in an instant [41]."

Conversely, a person who always agrees with their partner lest he or she create ten-

sion also minimizes the benefits of collaborative work. For favorable idea exchange,

there should be some healthy disagreement/debate. Notably, there is a fine balance be-

tween displaying too much and too little ego. Effective pair programmers hone this

56

balance during an initial adjustment period. Ward Cunningham, one of the XP founders

and experienced pair-programmer, reports that this initial adjustment period can take

hours or days, depending on the individuals, nature of work and their past experience

with pair-programming.

4.2.5 Workspace Layout

In the pair programming survey (see Appendix D), 96% of the programmers agreed

that appropriate workspace layout was critical to their success. The programmers must

be able to sit side-by-side and program, simultaneously viewing the computer screen

and sharing the keyboard and mouse. In

57

Figure 4 below (from [50]), layouts to the right are preferable to layouts on the left.

Effective communication, both within a collaborative pair and within and between col-

laborative pairs, is paramount. Without much effort, programmers need to see each

other, ask each other questions and make decisions on things such as integration issues,

lest these questions/issues are not discussed adequately. Programmers also benefit from

“accidentally” overhearing other conversations to which they can have vital contribu-

tions. Separate offices and cubicles can inhibit this necessary exchange. "If any one

thing proves that psychological research has been ignored by working managers, it's the

continuing use of half partitions to divide workspace into cubicles. … Like many kings,

some managers use divide-and-conquer tactics to rule their subjects, but programmers

need contact with other programmers. [41]”

58

Figure 4: Workspace Layout

4.2.6 Taking Breaks

Because pair programmers do keep each other continuously focused and on-task, it can

be very intense and mentally exhausting. Periodically, taking a break is important for

maintaining the stamina for another round of productive pair programming. During the

break, it is best to disconnect from the task at hand and approach it with freshness when

restarting.

vs

CHAPTER 5

QUANTITATIVE RESULTS

This chapter will explore the economics of collaborative programming based on the

observations and measurements of the students involved in the experiment at the Uni-

versity of Utah outlined in the previous chapter and in Appendix A. Specifically,

comparisons were made between individuals using the PSP and collaborators using the

CSP because it has been shown [12, 21] that PSP is a significant improvement over the

ad hoc development prevalent in industry. Transitively, it follows that, if CSP is an im-

provement to PSP, it is an even greater improvement to ad hoc development practices.

Differences between the individual (control) group and the collaborative (experi-

mental) group were examined for statistical significance using the independent-samples

t test. This test is used to examine if the mean of a single-variable for subjects in one

group differs from that in another group. An independent samples test can be used be-

cause the students were placed in identical situations. The only difference between the

groups was the variable under study, collaborative work vs. individual work.

In the independent-samples t test, a “p-value” indicates the probability of the differ-

ence result being caused by chance. Differences, which had a p-value of less than .05,

were deemed statistically significant, indicating that there would be less than a 5%

chance the difference would be caused by chance.

60

The chapter will discuss the effect of collaborative programming on the satisfaction

of the programmers. Lastly, some additional, secondary quantitative measurements will

be discussed.

5.1 An Economic Evaluation of the Collaborative Software

Process

. . . economics is primarily a science of choices, and software economics
should provide methods and models for analyzing the choices that soft-
ware projects must make. [51]

The affordability of pair programming is a key issue. If it is more expensive, manag-

ers simply will not permit it. “From a business standpoint, profit is not only an

organization's goal, it is necessary for its survival. The ultimate aim of engineering is to

create the most income from the least expense, thus maximizing profit. [52].”

Skeptics assume that incorporating pair programming will double code development

expenses and critical manpower needs. Along with code development costs, however,

other expenses, such as quality assurance and field support costs must also be consid-

ered. IBM reported spending about $250 million repairing and reinstalling fixes to

30,000 customer-reported problems [11]. That is over $8,000 for each defect!

In this section, first some basic measurements and observations of the students in the

experiment will be reported. Delving into emerging research in Software Engineering

Economics, an affordability model for pair programming will be developed using these

observed measurements. “Practitioners are most concerned about understanding what

aspects of software engineering innovations have worked best and whether they are ap-

plicable to their particular situation [53].”

61

5.1.1 Pair-Quality

We have learned to live in a world of mistakes and defective products as
if they were necessary to life. It is time we adapt a new philosophy in
America. [W. Edwards Deming]

Product quality is a very important metric. The collaborative pairs and the individ-

ual students in the University of Utah experiment completed four programs to the same

specifications. The results were compared. The bar chart in Figure 5 below shows the

percentage of the instructor’s test cases passed, on average, by the two groups. On aver-

age, the collaborators’ code had about 15% fewer defects than the individuals’ code.

These results are statistically significant at p < 0.05 in all cases except the first program.

Figure 5: Post Development Test Cases Passed

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

Program 1 Program 2 Program 3 Program 4

Individuals Collaborators

62

Figure 6 displays a boxplot of the percentage of post development test cases passed

for programs 2 through 4. It demonstrates graphically why the quality differences are

statistically significant. The horizontal line at the center of each box marks the median

(the middle observation when the data values are ordered from smallest to largest) of

each sample. The edges of the box mark the 25th and 75th percentiles. The “whiskers,”

or the vertical lines that extend from the box show the range of values that fall within

1.5 box lengths of the median. The open circle (o) under the individual box indicates an

extreme value that is more than 3 box lengths from the median. The number under each

box is the sample size.

Figure 6: Pair-Quality Boxplot

3838N =

Group

IndividualCollaborative

%
 o

f T
es

t C
as

es
 P

as
se

d

120

100

80

60

40

20

0

56

63

The boxplot in Figure 6 shows several desirable qualities for the quality of collabo-

rative pairs. First, the median value is clearly higher than the median for individuals. In

fact, the lower edge of the collaborator box which marks the 25th percentile is above

the individual’s median – so over 75% of the collaborators achieved scores higher than

the individuals. Additionally, the range of values for the collaborators is significantly

smaller, indicating greater consistency of high quality, as would be expected by the ef-

fects of pair-pressure.

5.1.2 Pair-Time

Many people’s gut reaction is to reject the idea of pair-programming because they

assume that there will be a 100% programmer-hour increase by putting two program-

mers on a job that one can do. After the initial adjustment period the total programmer

hours spent on each assignment trended downward dramatically as shown below in

Figure 7. Together the pairs only spent about 15% more time on the program than the

individuals. Additionally, after the first program, the difference between the times for

individuals and for the pairs was no longer statistically significant. (As discussed, sta-

tistical significance is obtained if p < .05. For the difference in time values, p = .380,

which indicates that there is almost a 40% chance the difference in time values would be

observed by chance.)

64

Figure 7: Elapsed Time

Elapsed Time

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

Program 1 Program 2 Program 3

One Individual One Collaborator

(One important note: Programmer time for program 4 was not included in this

analysis. For this particular program, the students reported time measurements with sig-

nificant variability. Therefore, the instructor distributed an anonymous survey to obtain

feedback on this variability from the students. The students reported that it was mid-

term week and many of them had a large Operating Systems project due during that

week. Many of them said that they recorded their time and defect data for this program

significantly less accurately than they had in the past. Therefore, these self-reported

measurements were eliminated from the study. The students’ quality level for this par-

ticular program was included in section 5.1.1 because quality was not a self-recorded

measurement.)

Figure 8 below shows the box plot of the time values for programs 2 and 3, after the

pair-jelling has occurred. It is easy to see why the time differences are no longer statis-

tically significant. The median values are essentially equal. The range of values for the

65

collaborators is larger than for the individuals, which drives the 15% increase in the

mean value for the collaborators.

These findings that resource requirements do not double with collaborative pro-

gramming agree with the anecdotes of professional pair-programmers. Professionals

who have paired for a year or more consistently describe pair-programming as “more

than twice as fast,” implying that increased productivity gains might be realized with

more experience. The economic analysis below will assume that pairing requires a 15%

development time investment. This assumption, however, is clearly conservative con-

sidering the input of long-time pair programmers.

Figure 8: Pair-Time Boxplot

2526N =

Group

IndividualCollaborative

Ti
m

e
(m

in
ut

es
)

1800

1600

1400

1200

1000

800

600

400

200

0

66

5.1.3 Net Present Value Analysis

“Software quality is an investment that should provide a financial return relative to

the initial and ongoing expenditures in the software quality improvement initiatives

[54].” [52, 54-56] profess the use of the economic net present value (NPV) to evaluate

the return on software quality initiatives. NPV is the most widely accepted criterion for

project evaluation in corporate finance [57]. A project with positive NPV increases the

wealth of the firm. A high NPV is more preferable to a low NPV; a negative NPV indi-

cates an unacceptable investment.

NPV is measured in today’s dollars. The time value of money is accounted for by

discounting all future cash flows back to the present time under the assumption that a

dollar today is worth (1 + d)T dollars at time T in the future (or a dollar at time T is

worth 1/(1 + d)T today). The positive quantity d is referred to as the discount rate, which

captures the opportunity cost (e.g. the minimum acceptable return for an investment that

the company requires for similar projects) of the underlying investment [58].

A net present value model will first be explained. Then, the model will be used to

evaluate the economic advantage of the CSP.

5.1.3.1 General Net Present Value Model

In one economic model [56], Erdogmus considers five determinants to compare the

net present value of alternative software development strategies. Consider the timeline

and these determinants explained in Figure 9.

67

The present value of the project is calculated by discounting the net asset value back

to time zero (from time T) using a discount rate of d and subtracting the cost of devel-

opment from the result.

 This standard, recognized model will be slightly altered for the analysis of the af-

fordability of CSP based on the personal suggestion of Hakan Erdogmus of the National

Research Council of Canada. In order to avoid the choice of an arbitrary Asset Value

(C) to represent projected revenues, a Present Value of Costs (PVC) model will be used

instead. The calculation of PVC is similar to that of NPV, except that Asset Value (C)

is not considered. PVC is then calculated M/(1+d)T + I. The alternative with the lower

PVC is superior.

68

F ure 9: Net P e

Dev
twee
posi

Dev
cash
first

(Fut
tive

Ope
cash

Disc
vestm

Net
flow

Net

5.1.3.2 A

Costs (PVC

A hypot

vantage of

Simultaneou

a collaborat

I

Development
elopment Time (T) or time to m
n the commit to invest in the pro
tive cash flow from revenues or co

elopment Cost (I) is the total pre
 flows from the time the decision
major positive cash flow.

ure) Asset Value (C) is the total
cash flows that the project is expe

ration Cost (M) is the total pres
 flows of the operation phase, mai

ount rate (d) captures the oppo
ent.

Asset Value (C-M) = The net
s.

Present Value (NPV) = (C-M)/(1

nalyzing the Economic Advant

) Model

hetical situation will be developed

CSP. Consider an application pr

sly, the application will be devel

ive pair. The process of develop
resent Valu

Operation
arke
ject
st s

sen
 to

pres
cted

ent
nly

rtu

of o

+d)

age

 in

ojec

ope

ing
C - M
0

ig
T

t. This is the elapsed time be-
 and the time of the first major
avings.

t value at time 0 of all negative
 invest is made to the time the

ent value at time T of the posi-
 to generate post development.

value at time T of all negative
maintenance costs.

nity cost of the underlying in-

ngoing post development cash

T – I

 of CSP Using the Present Value of

 order to demonstrate the economic ad-

ted to be 50,000 lines of code (LOC).

d by an individual programmer and by

 the application via the individual will

69

be considered the base strategy. The process of developing the application via the col-

laborative pair will be considered the test strategy.

General Assumptions:

1. An average productivity rate of 25 LOC/hour will be used for the analysis.

This was the average productivity rate of 196 engineers who took PSP train-

ing [21].

2. The US average defect/KLOC rate is 39 defect/KLOC. This statistic was ob-

tained from Capers Jones [43]. The data comes from companies such as

AT&T, Hewlett Packard, IBM, Microsoft, Motorola, Raytheon, and similar

companies with formal defect tracking and measurement capabilities.

3. In the US, on average 85% of defects are removed via the development proc-

ess. 15% of all defects escape to the customer. This statistic was also

obtained from Capers Jones [43]. (Together assumptions 2 and 3 indicate

that there would be 5.85 defects/KLOC remaining in code. This is consis-

tent, though on the low side, with statistics from the Pentagon and the SEI

which state that typical software applications contain 5-15 defects per KLOC

[59].)

4. Collaborative pairs spend 15% more time overall than individuals (see sec-

tion 5.1.2). However, since this work is done in tandem, the collaborators

spend 57.5% of the elapsed, “wall clock” time that individuals do.

5. Code produced by collaborative pairs has a 15% lower defect density than

code produced by individuals (see section 5.1.1).

70

6. When software is delivered to customers or users, bugs and defects start be-

ing reported back to the development organization. However, the discovery

of bugs by users is not instantaneous. Table 2 below enumerates the US av-

erage three year discovery rate of initial software defects after release found

in [43]:

7. [30] reported statistics from large Bell Northern Research software projects

(over 2.5 million lines of code) that show that each defect in software re-

leased to customers and subsequently reported as a problem requires an

average of 4.5 man-days to repair or an average of 33 hours of subsequent

maintenance effort, assuming a 7.5 hour workday. This is consistent with

data reported in [11]. Therefore, 33 hours/field defect will be used in the

analysis.

8. A reasonable annual discount rate of 10% is used for both the base and test

strategy. This equates to 0.80% per month.

9. Software engineers that develop new code cost $50/hour. Field support

software engineers cost $40/hour. (This includes salary + benefits.)

In Table 3, the Present Value of Costs is calculated for both the individual and the

collaborative programming alternatives.

71

Table 2: US Average Defect Discovery Rate

 Average
Year 1 57.5%
Year 2 27.5%
Year 3 12.0%
Latent (Not found) 3.0%
Total 100.0%

Table 3: Present Value of Costs (PVC) Analysis

 Assumption Individual Collaborators
Engineer Hours 1, 4 2,000 hours 2,300 hours
Development Time (T) 4 2,000 hours

(~52 weeks or ~12
months)

1,150 hours
(~30 weeks or ~7
months)

Development Cost (I) 9 $100,000 $115,000
Defect in Field (DF) 2, 3, 5, 6 293

Discovery by Year
(post development)
T + Year 1 169
T + Year 2 81
T + Year 3 35

249
Discovery by Year
(post development)
T + Year 1 143
T + Year 2 68
T + Year 3 30

Operation Cost(M)
(sum of field costs for
each defect, discounted
back to time T)

DF + 7, 8 (169*33*40)/1.10 +
(81*33*40)/1.102 +
(35*33*40)/1.103=
325,874

(143*33*40)/1.10 +
(68*33*40)/1.102 +
(30*33*40)/1.103=
275,534

Discount Rate (d) 8 10% (or 0.8%
monthly)

10% (or 0.8%
monthly)

Present Value of Life-
time Costs (PVC)

 325874/1.00812 + 100,000
 = $396,158

275534/1.0087 + 115,000
= $375,586

PV of Cost Savings with
CSP relative to PSP
(PVCPSP – PVCCSP)

 $20,572

72

Because the PVC for the collaborators is less than that of the individuals, the

firm’s worth would gain more from a collaborative programming strategy. In fact, using

the parameters in the example, pair programming could cost as much as 135% of devel-

opment cost of individuals and the firm would still break even with higher quality. The

cost savings of CSP through time can be viewed graphically in Figure 10. Initially, CSP

costs more than PSP. Through time, savings are accrued to net a positive investment.

To paraphrase Crosby’s words [1] in Chapter 1, “Pair-quality is free . . . Pair-

quality is not only free, it is an honest-to-everything profit maker.”

Figure 10: Cost Saving of CSP Through Time

-20000

-10000

0

10000

20000

30000

40000

50000

0 1 2 3

73

5.1.4 Economic Advantage of Cycle Time and Product Quality

Working in tandem, pairs were able to complete their assignments in 58% of the

elapsed time and with higher quality than the individuals. In today’s competitive mar-

ket, getting a quality product out as fast as possible is a competitive advantage or can

even mean survival. [60] stresses the importance of examining both the technical value

and the business value of process improvements. “And, decreased time to market, as

well as improved product quality, are perceived as offering business value, too [60].”

Intuitively, this is easy to believe.

Erdogmus [56], however, builds an economic model to establish quantitatively our

intuition and to confirm the importance of rapid development and superior quality. The

model incorporates several lower-level metrics into a Net Present Value Incentive

(NPVI) measure. The whole model is defined in Appendix F. Two of the lower-level

metrics are Early Entry Advantage (EEA) and Quality/Functionality Advantage (QFA).

(EEA considers whether the market is ripe for the end product and that maximum re-

ward is achieved through immediate entry.) If the test strategy has favorable values for

these two metrics, as would be expected with collaborative programming, the Asset

Value Advantage (AVA) for the test strategy is improved. Ultimately a larger AVA im-

proves the NPVI of the test strategy making it a more desirable alternative.

5.2 Engineer Satisfaction

You know what I like about pair-programming? First, it’s something that has
shown to help produce quality products. But, it’s also something that you can
easily add to your process that people actually want to do. It's a conceptually

74

small thing to add . . . And, when times get tough, you wouldn’t likely forget to
do pair-programming or decide to drop it “just to get done.” I just think the
idea of working together is a winner. [Chuck Allison in [35]]

 The incorporation of pair-programming into CSP improves engineers’ job satisfac-

tion and overall confidence while attaining the quality and cycle time results discussed

above. Pair programmers were surveyed six times on whether they enjoyed their job

more when pair programming. First, an anonymous survey of professional pair pro-

grammers was run on the Internet. (The results of this survey are reported in Appendix

D.) Both the summer and fall classes at the University of Utah were surveyed three

times. Consistently, over 90% agreed that they enjoyed their job more when pair pro-

gramming. The results are shown in Figure 11.

The groups were also surveyed on whether working collaboratively made them feel

more confident about their work. These results are even more positive. (It is important

to note that the fall class was surveyed for the first time before they were instructed on

CSP and before they had ever pair-programmed.) The results are shown in Figure 12.

75

Figure 11: Pair Satisfaction

Enjoy the Work More Because of Pair
Programming

0%

20%

40%

60%

80%

100%

PROF SUM1 SUM2 SUM3 FALL1 FALL2 FALL3

Agree Disagree

Figure 12: Pair Confidence

More Confident in our Work When Pair-
Programming

0%

20%

40%

60%

80%

100%

PROF SUM1 SUM2 SUM3 FALL1 FALL2 FALL3

Agree Disagree

76

 These results that show improved satisfaction and confidence cannot be taken lightly,

because they could well be the difference between a pair actually following a disciplined

process and reverting back to ad hoc procedures in the typically chaotic environment of

software development. Often under pressure, engineers are tempted to stop the ‘volun-

tary’ defect prevention and efficient defect removal activities and are then faced with an

overwhelming amount of ‘involuntary’ testing and debugging. Consider the following

experience of PSP training in the TIS group at Hill Air Force Base. It is important to

note that their high CMM maturity level indicates they are already a highly disciplined

group, much higher than most software engineering organizations.

TIS is a high-maturity organization with a strong history of software
process improvement. In March 1995, TIS was assessed as a CMM
Level 3 organization, and the assessment conducted in July 1998 rated
them at CMM Level 5. This is the first software engineering organiza-
tion in the Department of Defense (DoD) to receive this rating, and it is
one of the few Level 5 software groups in the world . . . During the sum-
mer of 1996, TIS introduced the PSP to a small group of software
engineers. Although the training was generally well received, use of the
PSP in TIS stated to decline as soon as the classes were completed.
Soon, none of the engineers who had been instructed in PSP techniques
was using them on the job. [61]”

The SEI is addressing this issue by increasing the awareness of the Team Software

Process (TSP) [34] that puts a management structure and awareness around PSP use by

engineers. However, the collaborative programming can aid in the long term use of a

disciplined process. First, engineers would not likely “forget” to work with their partner

(as can often be done with activities such as design or code reviews) when under stress-

ful situations. Indeed, they want to work with their partner; they enjoy working with

their partner. Further, pairs consistently report that pair-pressure causes them to follow

procedures that they might otherwise discard if they were not working with a partner.

77

The comparisons made in this dissertation are between individuals following a dis-

ciplined process and collaborators following a disciplined process. Actual results might

even be better than what has been shown if the individuals revert to an ad hoc process

while the collaborators keep each other on the disciplined track.

5.3 Secondary Indications

5.3.1 Collaboration and Teamwork

The students did one four-week project in four-person teams. Seven teams were

formed of two collaborative pairs and used the CSP as the underlying process for their

code implementation. Three groups were formed of four individuals and used the PSP

as the underlying process for their code implementation. The students worked at the

CSP2.1/PSP2.1 level. They also used Watts Humphrey’s Introductory Team Software

Process (TSPi) [34]. Teams using the TSPi use PSP to guide their individual code im-

plementation and use the team structure of TSPi to guide their team coordination

activities. The purpose of this phase was to examine the hypothesis that the intercom-

munication effort associated with code/system integration between programmers on a

development team is significantly reduced with the use of pair programming.

Unfortunately, the sample sizes of this phase were too small and did not yield statis-

tically significant results. However, the results can be discussed for their merit. The

groups formed from collaborative pairs spent 28% less time than the groups formed

from individuals with a p value of 0.410. The groups formed from individuals actually

passed 2% more test cases than the collaborative teams with a p value of 0.521. These

results do indicate that collaborative teams are more efficient than teams consisting of

78

individuals and that collaborative teams can produce code of similar quality to that of

individuals in less time. However, because the results are very far from being statisti-

cally significant, it is hard to draw any conclusions from the findings. Further

investigation is necessary, as is indicated in the Future Work section of this document.

5.3.2 Design Quality

Observations of the students’ code showed that the pairs produced superior high-

level project designs. The individuals were more likely to produce “blob class [62]" de-

signs -- just to get the job done. The design from the collaborative teams exploited

more of the benefits of object-oriented programming. Their classes demonstrated more

encapsulation and had more classes with better class-responsibility alignment. The in-

dividuals tended to have fewer classes that had many responsibilities. The collaborative

designs would, therefore, be easier to implement, enhance and maintain. A confirma-

tion of their superior designs is that the pairs consistently write less code than the

individuals to achieve the same result but with higher quality. This could not happen if

not for better, simpler, well thought-out designs. The student results are shown in

Figure 13 below. It is a well known adage in industry that a good strategy for reducing

maintenance costs is to reduce software size. Pair-programming helps in this goal.

Also, Microsoft Chief Operating Officer Robert Herbold states that, “Our challenge is to

make software simpler. [59]”

79

Figure 13: Relative Number of Lines of Code

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

Program 1 Program 2 Program 3

Individuals Collaborators

5.3.3 Collaboration by Phase

Ideally, pair-programmers should work together constantly. However, reality dic-

tates that at times the pair must split – for illness, time conflicts, or even efficiency.

Over time, experienced pair programmers have prioritized which parts of the develop-

ment cycle are most important to work together, which can be done separately, and what

to do with the independently developed work when reuniting. This information has

been derived from surveys of professional programmers and students and from the self-

reporting time records of the students. A summary of the average collaboration by

phase records for all programs of the students is shown in Figure 14.

80

Figure 14: Collaboration by Phase

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Plan
ning

Des
ign

Des
ign Rev

iew Code

Code R
ev

iew

Compile Tes
t

Ove
ral

l

Collaborative Individual

5.3.3.1 Analysis and design

Unanimously, pair-programmers agree that collaborative analysis and design is criti-

cal for their pair success. First, it is important for the pair to collectively agree on the

development direction and strategy outlined during these stages. Additionally, it is

doubtless that “two brains are better than one” when performing analysis and design.

Together, pairs have been found to consider many more possible solutions to a problem

and more quickly converge on which is best to implement. Their constant feedback,

debate, and idea exchange significantly decreases the probability of proceeding with a

bad design. Perhaps, the collaborators can perform tasks that might be just too chal-

lenging for one to do alone.

81

While one partner is busy typing or writing down the design, the other partner can

think more strategically about the implications of the design and can perform a continu-

ous design review -- considering whether the design will run into a dead end or if there

is a better strategy. Design defects are prevented or removed almost as soon as they hit

the paper. A further benefit is the reduction of "design tunnel vision," which occurs

when one makes a design decision and sticks with it no matter what. With the partner

reviewing and questioning decisions, the chance of exploring good design alternatives is

increased.

This investment in dual analyzers and developers is wise. [10] reports that typically

no more than 33% of development effort is spent in the pre-coding phases. However,

68% of the testing field errors and more than 83% of the defect removal effort is fo-

cused on fixing complex defects that were injected in the design phase.

5.3.3.2 Code Implementation

After developing a quality design, the pair must implement it. Interestingly, pro-

grammers view pair-analysis and design as more critical than pair-implementation.

Pairs report that they plan to code individually at times. They often deliberately split for

the more rote, routine, simple coding of a project. They find performing this type of

programming is more effective done individually. It seems that some tasks, such as

GUI drawing, are largely detail-oriented in nature. Developers report that having a part-

ner for this work doesn’t help much. Additionally, they do allow themselves to code

average complexity modules if the situation, such as time conflicts, dictates – though

most immediately feel notably uncomfortable and more error prone. Some, particularly

82

the Extreme Programmers, profess that any work done individually should be scrapped

and redone by the pair. However, most programmers perform a thorough review of the

individual work and incorporate it into the project. A small minority integrates individ-

ual work without review.

5.3.3.3 Testing

Pairs report that they consistently develop the test cases together. Sometimes, how-

ever, they split up to run test cases, often side-by-side at two computers. When defects

are uncovered, the pairs usually rejoin to collaborate to find the best solution.

(Much of this information has previously been reported in [35])

5.3.3.4 Collaboration Among the High and Low Academic Performers

High academic performers tend to collaborate more than lower academic perform-

ers. Based on their past GPA, members of the class were classified as high (top 25%),

middle (mid 50%), and low (bottom 25%) past academic performers. The percentage of

collaboration by phase was examined for pairs with at least one high performer and for

pairs with at least one low performer. The results are shown in Figure 15. Doubt-

lessly, the groups with at least one high performer collaborated significantly more than

the groups with at least one low performer. In an academic setting, the students must

make the effort to coordinate schedules in order to collaborate. The high achievers saw

enough value in collaboration to put forth this effort consistently. The lower achievers

did not make as much effort to collaborate, though they still did collaborate more than

70% of the time.

83

Figure 15: Average Collaboration by Phase for Performance Types

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

Plan
nin

g

Des
ign

Des
ign

 R
ev

iew
Cod

e

Cod
e R

ev
iew

Com
pil

e
Tes

t

Ove
ral

l

High Class Average Low

5.3.4 Collaboration Perhaps Not for All

All students took the Meyer-Briggs [63, 64] test, which has been used in many stud-

ies to indicate personality type. The personality test classifies people into one of sixteen

personality types.

The Meyers-Briggs’ sixteen personality types are based on combinations of four in-

dicators. The test indicates which of each of these four indicators is stronger. These

four indicators are briefly described:

• = Extraversion or Introversion: Extraverts (E) are talkative and social. In-

troverts (I) are quiet and private.

• = Sensation or Intuition: Indicates whether a person is more likely to obtain

input from external observation (S) or introspective inner feelings (I)

84

• = Thinking or Feeling: Thinkers (T) govern themselves with their heads,

their concepts and their percepts. Feelers (F) follow their heart, which

means most of what they do is based on emotion or desire.

• = Judgment or Perception: People with high judgment (J) make and keep

schedules in their daily life. People who rank high in perception (P) pre-

fer to probe for options and not be tied to a schedule.

Almost half (19/41) ranked high in both Introversion (I) and Judgment (J). (In

Meyer’s Briggs’ notation, this makes them IxxJ personality types.) This means many in

the class were introverted and followed a schedule daily. These results are not surpris-

ing for a class of computer scientists.

However, it is notable that on the first day of class, six of the seven students that

indicated they did not want to try collaborative programming were IxxJ personality

types. Perhaps they were resistant to needing to constantly communicate with and to

coordinate schedules with another. This is not seen as an insurmountable personality

type that is a barrier to collaborative programming, though. The other 13 IxxJ students

were very successful collaborators.

In Appendix D are the results of a survey of professional collaborative pro-

grammers. A question on the survey probed whether the programmer had ever tried and

failed to pair with another engineer. Most indicated that they were never unable to col-

laborate. Excess or too little ego, not personality type, was cited as the main problem in

those that did have difficulty.

85

5.3.5 Gender and Personality-Type Considerations

 There were six females and 35 males in the experimental class. As outlined in

Appendix A, when student pairs were formed, specific attention was placed to ensure

that groups were made up of a diversity of (seven) male-male, (four) male-female, and

(one) female-female pairs. Additionally, attention was placed on ensuring a variety of

Meyers-Briggs personality type combinations. These factors were carefully considered

in order to study possible factors for successful collaboration. However, there were no

conclusive findings based on gender or personality types. This is mainly because all

pairs were deemed to be successful collaborators. There were no trends of the follow-

ing:

• = groups not getting along

• = groups consistently spending more or less time completing their task than the

average

• = groups consistently achieving far better or worse quality than the average

Performance differences could easily be attributed to past academic performance.

CHAPTER 6

SUMMARY AND CONTRIBUTIONS

Dr. W. Edwards Deming, legendary quality consultant, led sweeping manufacturing

quality revolutions in both Japan and the US beginning in the 1950’s. His teachings

dramatically altered the economy of Japan (creating the opportunity for the US to “catch

up”). His Total Quality Management (TQM) practice stressed the importance of study-

ing and understanding in great depth the process of the production or service you are

delivering. He defined “Deming’s 85/15 rule: 85% of a worker’s effectiveness is de-

termined by the system he works within, only 15% by his own skill [9].” Considering

these of Deming’s philosophies, the merits of the research outlined in this dissertation

will be discussed.

6.1 Studying and Understanding the Process

Deming stresses the importance of studying and understanding your process. His

message to manufacturers was clear: Design in quality at the beginning of the develop-

ment process, instead of “testing in” pseudo-quality at the end of the production line

[59]. The Collaborative Software Process (CSP) synchronizes with this philosophy. A

significant assumption behind the designation of CSP as a high quality process is the

use of pair-programming. With pair-programming, two software engineers work side-

by-side at one computer – together producing one design, algorithm, code, or test arti-

87

fact. At any one time, one of the engineers is the “driver” who is actively creating and

recording the artifact. The other partner is constantly observing, critiquing, strategizing

on, and improving upon the work of the driver. The engineers periodically switch roles.

 Both are continuous, active participants in their joint creation.

Requirements analysis begins with the development of use classes, which are thor-

oughly explored through the development of the Use Case Flow of Events. The

scenarios, which emerge through the development of use cases, are used in the CRC

Card brainstorming session. The goal of this brainstorming session is the interactive

development of a high-level class diagram. The pair then reviews the design.

Once the design is documented and reviewed, the collaborative pair begins the itera-

tive process of developing a high quality implementation. The high-level design is

broken into smaller increments. Together they iteratively perform low-level design and

review, create test cases and code, perform a code review, compile and execute test

cases.

Throughout all this process, the pair is recording information about the amount of

time they spend on various stages of the process and about the defects they find and re-

move from their product. By following defined procedures, this data is turned into

valuable information the pair can used to evaluate the effectiveness of their process and

to adjust their joint process accordingly. Using this information as well as qualitative

knowledge of how their process went, the pair documents what worked and what did not

work about what they did in order to perform continual process improvement.

In analyzing Deming’s directive “understand your process for delivering a quality

product” CSP excels. The Personal Software Process (PSP) has been shown to be a sig-

88

nificant improvement over mainstream, ad hoc software development. When compared

quantitatively, the CSP demonstrates a marked improvement over the PSP for delivering

high quality products. The incorporation of pair-programming paves the way for con-

tinually improving defect prevention and extremely efficient defect removal. The

process incorporates a systematic, continual evaluation of the overall process effective-

ness.

6.2 The System the Engineer Works In

Deming asserts that 85% of a worker’s effectiveness is determined by the system he

works within, only 15% by his own skill. A defined, quality process, such as the CSP,

provides a disciplined system for the engineer to work in. However, the collaboration of

the CSP maximizes the performance of the engineer beyond his or her own skill. In

fact, the collaboration of the CSP has been shown to improve the engineer’s own skill

through various factions of pair-learning – through apprenticeship and through the con-

tinual design and code reviews that take place.

Collaboration has been shown to improve the engineers’ joint ability to derive the

best solutions and to evolve solutions to unruly or seemingly impossible problems.

Theories from the science of Distributed Cognition support the notion that different

skills and perspectives each of the pair bring to the task and their desire to succeed at a

common goal causes them to explore a larger number of alternatives and to negotiate

the best course of action. Pairs are also observed to attack hard problems with a “tag-

team” approach whereby each partner, in turn, incrementally contributes to the solution.

89

Collaboration also improves the system in which the engineers work. Pairs tend to

positively pressure their partners into a higher level of performance and into consistently

following the prescribed process. In industry, the engineers generally pair with different

partners on a regular basis. This has been shown to reduce the risk to the project of sev-

eral individuals being the primary technological assets of the project; the untimely loss

(through job change or accident) of any of these individuals could devastate the project.

 Additionally, pair rotation has been shown to greatly improve teamwork and communi-

cation among the team. Lastly, almost unanimously, pair programmers claim to be

happier and more confident on the job when pair programming.

6.3 Summary of Contributions

The two primary contributions of this research are the Collaborative Software Proc-

ess and the quantification of the benefits of collaborative programming. Mature

engineering disciplines generally follow proven, documented procedures to reliably pro-

duce high quality products. As Software Engineering strives to mature, proven

processes are necessary. The Collaborative Software Process makes a contribution.

This research has defined and validated the effectiveness of a disciplined process for a

collaborative pair of software engineers.

The quantitative study that validated the effectiveness of CSP also legitimized the

practice of pair-programming. In the experiment, the independent variable between the

control group and the experimental group was the use of pair-programming. Therefore,

the increased quality demonstrated by the pairs can be attributed to the collaboration.

Additionally, the pairs spent only statistically insignificant more time working on their

90

programs. Therefore, the quality gains can be realized with little or no increase in de-

velopment time. Factoring in field support cost savings of increased quality and the

benefits of reduced cycle time, the collaborative teams are less expensive overall. Ad-

ditionally, many quantitative benefits to the software firm and to the individual are

realized with pair programming. In short, all paths point to pair-programming.

One professional programmer reported that, despite many successes, pair-

programmers were ordered to work individually at his workplace. His management

simply could not believe that it was cost effective. The results of this research have al-

ready been used by many professional programmers who want to justify continuing and

to justify initiating the prevalent use of pair programming as they strive to delight their

customers with high quality products on schedule.

CHAPTER 7

FUTURE WORK

These findings have spawned many more research ideas:

1. Industrial Validation. The validation of the CSP was a carefully planned em-

pirical study. An important consideration in empirical research design is

external validity, the ability of the experimental results to apply to the world out-

side the research situation. The results outlined in the dissertation are conclusive

and can be meaningfully applied to professional programmers because the re-

search studied the interactions between and efficiencies of two programmers

working collaboratively. These issues would not be complicated by the com-

plexity or scale found in industry. Indeed, several professional programming

organizations have begun to justify pair-programming from the publications re-

sulting from this research. Nonetheless, formal re-validation of the results with

professional programmers in an industrial setting would be beneficial.

2. Brook’s Law. Over 25 years ago, Frederick Brooks taught us that adding man-

power to a late project makes it later due in a large part to added communication

costs. Pairing programmers cuts the necessary communication paths in half. It

would be interesting to study the effects of collaborative programming in a lar-

ger team setting to examine the communication efficiencies.

92

3. Distributed Cognition. Many of the observations and findings on collaborative

programming can be supported by theories in the distributed cognition area of

cognitive science. Investigating these ties further would be interesting research.

4. Distributed Collaboration. An exciting area of Computer Science is Distrib-

uted Collaboration. Many tools are being developed to support collaboration

between team members who are physically separated. Further study could ana-

lyze whether the efficiencies and gains seen with physically co-located

programmers can be realized with distributed pairs.

5. Pair-Learning. “Traditionally, collaboration in the classroom . . . has been ta-

boo, condemned as a form of cheating. Yet what we discover . . . is that

collaboration can only make our classrooms happier and more productive [38].”

 An unexpected result of the experiment was the observations of the intense

benefits of pair-learning and pair-programming for students learning a new pro-

gramming language. Students are happier and learn faster. Pairs continuously

teach each other. Students no longer look solely to the teaching staff for techni-

cal help, and therefore the workload of the teaching staff is reduced. It would be

useful to quantify these benefits in order to justify the benefits of pair-learning to

other instructors. Indeed, Larry Constantine, who’s observation of P. J.

Plaugher’s software company were reported in the Related Works chapter, noted

that “. . . for language learning, there seems to be an optimum number of stu-

dents per terminal. It’s not one . . . one student working alone generally learns

the language significantly more slowly than when paired up with a partner [19].”

93

6. eXtreme Programming. The eXtreme Programming methodology employs

many techniques counter to currently accepted software engineering practice.

Therefore, isolating which factor to attribute its reported success is difficult.

This dissertation research established that employment of pair-programming

contributes to their success. Additional research could help dissect additional

contributing factors.

7. Economic Net Present Value Analysis. Section 5.1.4 and Appendix F utilize

an economic model [56], which incorporates various lower-level metrics into

Net Present Value Analysis. Most of this model is concretely defined in mathe-

matical formulae. However, one of the inputs, Quality/Function Advantage

(QFA), is still theoretical. Research into defining a concrete formula for QFA

would complete the model. The model could then be utilized for a complete,

concrete evaluation of the Net Present Value of software process alternatives

that improve the quality of software.

APPENDIX A

EXPERIMENTAL DESIGN

The validation of the Collaborative Software Process was based on an empirical

study of students at the University of Utah. The details of this experiment were submit-

ted to the Institutional Review Board (IRB) at the University of Utah. The role of the

IRB is to determine if they believe the rights of the students will be violated in any way

by their participation in an experiment. The IRB deemed that this study was exempt

from their surveillance. In order to be declared exempt, an experiment must be con-

ducted in an established educational setting and involve normal educational practices in

order to evaluate or compare regular or special educational instructional strategies, cur-

ricula or methods.

The study was based on two courses taught in Summer Semester 1999 and Fall Se-

mester 1999. The Summer class was an exploratory, preparatory class in which CSP

was initially used and reviewed. Based on student feedback, CSP was revised for the

Fall class. The Fall class was the primary experimental class through which the major-

ity of the quantitative evidence was obtained. A Windows NT data collection and

analysis web application was developed as part of this research. The application was

used to accurately obtain data from and provide feedback to the students, as easily as

possible for the students. The details of both classes will be examined in this section.

95

Summer 1999

 The class, Collaborative Development of Active Server Pages, consisted of 20

juniors and seniors. The students were very familiar with programming, but not with

the Active Server Pages (ASP) web programming languages learned and used in the

class. One class period per week was spent learning the Collaborative Software Proc-

ess. The other class period each week was spent learning the web programming

languages. The students applied their newly acquired CSP knowledge and practices

when developing the class assigned web programming projects.

 The majority of the students had only used WYSIWYG web page editors prior to

taking the class. During the eleven-week semester, the students learned advanced

HTML, JavaScript, VBScript, Active Server Page Scripting, Microsoft Access/SQL and

some ActiveX commands. In many cases, the students would need to intertwine state-

ments from all these languages in one program listing – some of the content running on

the browser and some running on the NT server, adding to the overall complexity of the

program. Upon course completion, the students were all writing web scripts that had

significant dynamic content that accessed and updated a Microsoft Access database –

applications similar (though smaller) to what you would find on a typical e-commerce

web site.

Each student was paired with another student to work with for the entire semester.

At the start of the class, the students were asked whom they wanted to work with and

whom they did not want to work with. Of the ten collaborative pairs, eight pairs were

mutually chosen in that each student had asked to work with their partner. The last two

pairs were assigned because the students did not express a partner preference. Tests

96

were, however, taken individually. They understood that they were not to break the

class project into two pieces and integrate later. Instead they were to work together (al-

most) all the time on one product. These requirements were stated in the course

announcement and were re-stated at the start of the class. The students received instruc-

tion in effective pair-programming and read a paper [48] which helped prepare them for

their collaborative experience. Most skeptically, but enthusiastically, embarked on

making the transition from solo to collaborative programming.

The students kept a password protected web-page journal during the class in which

they recorded their impressions of using CSP each week. Each week they were given a

different set of questions to answer in their journal. Some example questions are listed

below:

1. It has been said among teachers, “You do not know it unless you can teach

it.” Do you find any value to yourself in explaining your work to your part-

ner?

2. Do you feel like you have learned anything about Active Server Pages pro-

gramming just by reading your partner’s code?

3. What was the biggest hurdle you have had to overcome as a collaborative

programmer?

4. What kinds of things does the non-driver do as he/she observes?

5. Which development phases have you tried to work together the most?

6. If you work separately, what do you do with the separate work when you get

back together?

97

7. Which development phases have you found it is OK to work separately at

times on?

8. What do you think is the biggest advantage of collaborative programming?

9. What do you think is the biggest problem with collaborative programming?

 Additionally, three times throughout the semester, the students completed anony-

mous surveys on their collaborative experience. Lastly, as part of the final exam, the

students wrote a letter objectively giving advice to future collaborative programmers.

These observations and critiques were used to update and enhance the CSP process prior

to a structured experiment and were reported in several papers [36, Williams, submitted

to IEEE Software #45, Cockburn, 2000 #58] and throughout this document.

Fall 1999

 The class, Senior Software Engineering (CS4510), consisted of 41 juniors and

seniors. The students learned of the experiment during the first class. They had to be

informed that it is an experiment because, as outlined below, some students completed

class programming projects individually and some worked in pairs. Additionally, they

were strongly encouraged to report all data accurately during the semester because of the

importance of the outcome. Generally, the students responded very favorably to being

part of an experiment that could drastically change the way software development could

be performed in the future.

On the first day of class, the students were asked if they preferred to work collabora-

tively or individually, whom they wanted to work with, and whom they did not want to

work with. Additionally, the students took a Meyers Briggs personality test [63]. The

students were also classified as “High” (top 25%), “Average,” or “Low” (bottom 25%)

98

academic performers based on their GPA. The GPA was not self-reported; academic

records were reviewed.

Using this information, the twenty-eight students were then assigned to Group C

(Collaborative) and thirteen to Group I (Individual). (Several students dropped the class

after the initial assignment. These numbers reflect the students who completed the

class.) Group C students completed their collaborative assignments using the CSP.

Group I students completed all assignments using a modified version of PSP. The PSP

was modified from that defined in [11] in order to parallel the CSP (e.g. use cases).

(Differences between PSP and CSP are outlined in Chapter 3.) The students were as-

sured that grades would be curved, as necessary, independently for each of the groups to

ensure that neither group would get an advantage in being academically successful in

the class.

The GPA was used to ensure that the groups are academically equivalent. Ulti-

mately (after the students had dropped out), Group C consisted of 7 high performers, 16

average performers, and 5 low performers. Group I consisted of 5 high performers, 5

average performers, and 3 low performers. The students were also grouped to ensure

there was a sufficient spread of high-high, high-average, high-low, average-average, av-

erage-low, and low-low pair grouping. This was done in order to study the possible

relationship between previous academic performance and successful collaboration.

Of the fourteen collaborative pairs, thirteen pairs were mutually chosen in that each

student had asked to work with their partner. The last pair was assigned because the

students did not express a partner preference.

99

 The students from both groups received instruction in effective pair-programming

and were given a paper [48] and several of the “letters to a future collaborative pro-

grammer” written by the Summer Semester class. These helped prepare them for their

collaborative experience.

The majority of the students were familiar with the Personal Software Process

(PSP), on which CSP was based, because they had been instructed on it in their CS1 and

CS2 class using the Introduction to the Personal Software Process book [40]. The

CS4510 used the more advanced PSP book, A Discipline for Software Engineering [11].

The PSP is documented through many process scripts, templates and forms. The CSP,

modeled on the PSP, also uses this documentation framework. Between the two proc-

esses, some of the documentation artifacts are very similar; others might be significantly

different. In the cases where a particular artifact differs between the CSP and the PSP,

both were taught to the entire class. For example, there was a class dedicated to the code

review sub-process. The procedures for doing code review alone (PSP) and for doing

code review collaboratively (CSP) were both be discussed and contrasted. All aspects of

the development cycles for both PSP and CSP were taught to all students.

The experiment proceeded in phases as defined below:

Pre-treatment: Each student completed one program individually, using PSP Level

0, which is essentially their current process with the addition of tracking the amount of

time they spend on the program and the defects they remove during their process. This

phase got them used to the data entry procedures. The data was used as a "pre-

treatment" baseline for all students. The purpose of the pre-treatment was to determine

if there were any significant performance changes for individuals when they worked in-

100

dividually versus when they worked collaboratively. No such changes were consistently

observed. Performance in the class was very coherent with the student’s past academic

performance.

Treatment: Four assignment cycles were completed during the treatment phase of

the experiment. During each cycle, the individuals completed one assignment and each

collaborative team completed two assignments. During this phase, the students pro-

gressed from PSP/CSP0.1 to PSP/CSP2.0.

Post-treatment: Each student completed one program individually. The data was

used as a "post-treatment" measure for all students. As with the pre-treatment, the pur-

pose of the post-treatment was to determine if there were any significant performance

changes for individuals when they worked individually versus when they worked col-

laboratively. No such changes were consistently observed. Performance in the class

was very coherent with the student’s past academic performance. Therefore, no addi-

tional findings were gained by the post-treatment.

Team: The students did one four-week project in four-person teams. Seven Group C

teams consisted of two collaborative pairs and used the CSP as the underlying process

for their code implementation. Three Group I students consisted of four individuals and

used the PSP as the underlying process for their code implementation. The students

worked at the CSP2.1/PSP2.1 level. They also used Watts Humphrey’s Introductory

Team Software Process (TSPi) [34]. Teams using the TSPi use PSP to guide their indi-

vidual code implementation and use the team structure of TSPi to guide their team

coordination activities.

101

The purpose of this phase was to examine the hypothesis that the intercommunica-

tion effort associated with code/system integration between programmers on a

development team is significantly reduced with the use of pair programming. Unfortu-

nately, the sample sizes of this phase were too small and did not yield statistically

significant results.

It must be noted that in both the summer and the fall classes, specific measures were

taken to ensure that the pairs worked together consistently each week. In the summer

class, one day each week the formal Active Server Page instruction was followed by ex-

ercises in which the pairs worked together. In the fall class, one class period each week

was allotted for the students to work on their projects. Additionally, the students were

required to attend two hours of office hours with their partners each week where they

also worked on their projects. It is critical for student pairing success to establish these

regular meeting times, lest the students get too involved in other classes and their jobs

and never get together. During these regular meeting time, the pairs jelled or bonded

and were much more likely to establish additional meeting times to complete their work.

Experiment Validity

Specific details of this empirical study have been designed to adhere to principles of

good research study design, as outlined in [65].

A common research study threat is caused by the Hawthorne effect. "The Hawthorne

effect refers to a change in sensitivity, performance, or both by the subjects that may

occur merely as a function of being in an investigation . . . The Hawthorne effect be-

102

comes a threat to internal validity when one group receives such a "special" treatment

and another does not, thereby introducing a systematic difference between groups in ad-

dition to the experimental variable [65]." Since both groups will receive the same

information about the study and in all lecture materials, the Hawthorne effect should not

pose a threat to this study.

Factors to ensure internal validity were carefully considered. Drew defines internal

validity as:

The technical soundness of a study. A study is internally valid or has
high internal validity when all the potential factors that might influence
the data are controlled except the one under study. This would mean that
the concept of control had been successfully implemented. If, for exam-
ple, two instructional methods were being compared, internal validity
would require that all differences between groups (e.g. intelligence, age)
be removed except the differences in the instructional method, which is
the experimental variable [65].

In this case, the experimental variable is the act of solo programming vs the act of

collaborative programming. Efforts have been made to remove other differences be-

tween the groups. GPA statistics were analyzed to balance the potential for success of

both groups. All students received the same information. Software processes, such as

the CSP and PSP, define steps for developing software to achieve predictable results.

This process structure also improves the internal validity of the study because all the

students should be using the same defined, repeatable process to develop their assign-

ments.

Factors affecting external validity were also carefully considered to ensure the re-

search and the experiment results will be considered viable by researchers and

practitioners. Drew defines external validity as:

103

The generalizability of results from a given study. External validity in-
volves how well the results of a particular study apply to the world
outside the research situation. If a study is externally valid or has con-
siderable external validity, one can expect that the results are
generalizable to a considerable degree [65].

Often empirical software engineering studies involving students are not highly re-

garded research because it is not viewed that projects done in a semester need deal with

issues of scope or scale that often complicate real, industrial projections. Even Watts

Humphrey – working in an industrial organization, did his initial PSP studies on stu-

dents, because he could not find any real project that would risk its success on a new

process. However, he says "You can apply PSP principles to almost any software-

engineering task because its structure is simple and independent of technology -- it pre-

scribes no specific languages, tools or design methods." His study, involving students,

was highly regarded, respectable research. CSP, though on a slightly larger scale be-

cause it involves two programmers, can be considered likewise. Also, an experiment

was performed on seniors at Carnegie Mellon involving communication metrics for

software development. "Such a test-bed represents an ideal environment for empirical

software engineering, providing sufficient realism while allowing for controlled obser-

vation of important project parameters [66]." This empirical study of this dissertation

involves the interactions between and efficiencies of two programmers working collabo-

ratively. Issues of complexity and scale are not inhibitors to the external validity of a

study of CSP with students at the University of Utah.

104

APPENDIX B

THE COLLABORATIVE SOFTWARE

PROCESS (CSP) DOCUMENTATION

Table 4: CSP Documentation Cross-Reference

 Table Number
Process Level All CSP0 CSP0.1 CSP1 CSP1.1 CSP2 CSP2.1
Process Scripts and Summaries
Process Script 4 14 23 29 41 45
Planning Script 5 15 24 24 42 46
Development
Script

 6 16 25 30 30 47

Postmortem Script 7 17 26 31 31 48
Project Plan
Summary and In-
structions

 8
9

18
19

18
19

32
33

43
44

43
44

PROBE Estimat-
ing Script

See [11] Appendix C Table C36 X X

Forms, Templates, Standards and Instructions
Time Recording
Log

10
11

X X X X X X

Defect Recording
Log

12
13

X X X X X X

Process Improve-
ment Proposal

20
21

 X X X X X

Coding Standard 22 X X X X X
Use Case Flow of
Events and In-
structions

27
28

 X X X X

Individual
Code Review
Checklist

34 X X X

Collaborative 35 X X X

105

 Table Number
Process Level All CSP0 CSP0.1 CSP1 CSP1.1 CSP2 CSP2.1
Code Review
Checklist
Individual Design
Review Checklist

36 X X X

Collaborative De-
sign Review
Checklist

37 X X X

Test Case Tem-
plate and
Instructions

38
39

 X X X

Test Coverage
Checklist

40 X X X

Size Estimating
Template

See [11] Appendix C Tables C39 and C40 X X

Task Planning
Template

See [11] Appendix C Tables C47 and C48 X

Schedule Planning
Template

See [11] Appendix C Tables C49 and C50 X

Note: An X indicates that the form, template or script indicated in the “All” column

is appropriate at that level. (Conversely, a blank square indicates that the form is not

used at that level.)

106

Table 5: CSP0 Process Script

Phase
Number

Purpose To guide you in collaboratively developing module-level
programs

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty Time and Defect Recording Logs
• = Stop watch (optional)

1 Planning • = Produce or obtain a requirement statement
• = Estimate the required development time of both part-

ners
• = Enter the plan data in the Project Plan Summary form
• = Record the time spent in the Time Recording Log for

Planning
2 Development • = Design the program

• = Implement the design
• = Compile the program and fix and log all defects found
• = Test the program and fix and log all defects found
• = Record the time spent in these activities in the Time

Recording Log in the appropriate phase
3 Postmortem • = Complete the Project Plan Summary form with actual

time, defect, and size data
 Exit Criteria • = A thoroughly tested program

• = Completed Project Plan Summary with estimated and
actual data

• = Completed Defect and Time Recording Logs

107

Table 6: CSP0 Planning Script

Phase
Number

Purpose To guide the CSP planning process

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty Time Recording Log

1 Program Re-
quirements

• = Produce or obtain a requirements statement for the pro-
gram

• = Ensure the requirements statement is clear and unambi-
guous

• = Resolve any questions
2 Estimate Re-

sources
• = Make your best estimate of the time (for both partners)

required to develop this program
 Exit Criteria • = A documented requirements statement

• = Estimated development time data entered in the Project
Plan Summary

• = Actual time spent planning entered in the Time Re-
cording Log

108

Table 7: CSP0 Development Script

Phase
Number

Purpose To guide the development of small programs

 Entry criteria • = Requirements statement
• = Project Plan Summary with planning completed
• = Time and Defect Recording Logs with planning com-

pleted
Note: The terms driver and non-driver are used below. The driver is the partner who
has control of the recording medium (ex: paper, computer keyboard) and is recording
the design or implementing code or fixing code. The non-driver is the other partner who
is actively observing the driver -- identifying defects, giving suggestions, etc. When a
partner is working alone, he or she is considered the driver, and no one is filling the
non-driver role.
1 Design • = Review the requirements and produce a design to meet

them via discussions between partners.
• = The driver records the design in pre-determined for-

mat/on pre-determined medium.
• = The non-driver observes to ensure the design is being

recorded efficiently and effectively meets the require-
ments. The non-driver identifies defects and gives
suggestions for alternative designs.

• = Periodically, switch drivers.
• = Record design time in the Time Recording Log

2 Code • = Implement the design.
• = The driver implements the design by typing code via

the keyboard.
• = The non-driver is observes to ensure the code properly

implements the design, identifying defects whenever
necessary and giving suggestions for alternative im-
plementations.

• = Periodically, switch drivers.
• = Record any requirements or design defects in the De-

fect Recording Log
• = Record coding time in the Time Recording Log

3 Compile • = Compile the program until error-free.
• = Both partners identify and discuss all defects found and

the possible implications of these defects elsewhere in
the code.

• = The driver implements the code changes by fixing code
via the keyboard.

• The non-driver observes to ensure the fix is properly

109

implemented, identifying erroneous fix implementa-
tions.

• = Periodically, switch drivers.
• = Record all defects found in Defect Recording Log
• = Record compile time (until program compiles error-

free) in the Time Recording Log
4 Test • = Test until all tests cases run without error

• = Both partners identify and discuss all defects found and
the possible implications of these defects elsewhere in
the code.

• = The driver implements the code changes by fixing code
via the keyboard.

• = The non-driver observes to ensure the fix is properly
implemented, identifying erroneous fix implementa-
tions.

• = Periodically, switch drivers.
• = Record defects in the Defect Recording Log
• = Record test time (until all test cases run error-free) in

the Time Recording Log
 Exit Criteria • = A thoroughly tested program

• = Completed Defect Recording Log
• = Completed Time Recording Log

110

Table 8: CSP0 Postmortem Script

Phase
Number

Purpose To guide the CSP postmortem process

 Entry criteria • = Problem description and requirements statement.
• = Project Plan Summary with planned development time.
• = Completed Time Recording Log
• = Completed Defect Recording Log
• = A tested and running program

1 Defects In-
jected

• = Determine from the Defect Recording Log the number
of defects injected in each phase.

• = Enter this number under Defects Injected -- Actual on
the Project Plan Summary

2 Defects Re-
moved

• = Determine from the Defect Recording Log the number
of defects removed in each phase.

• = Enter this number under Defects Removed -- Actual on
the Project Plan Summary

3 Time • = Review the completed Time Recording Log
• = Enter the total time spent in each phase under Actual

on the Project Plan Summary
 Exit Criteria • = A fully tested program

• = Completed Project Plan Summary Form
• = Completed Defect Recording Log and Time Recording

Log

111

Table 9: CSP0 Project Plan Summary

Student Date
Program Program #
Instructor Language

Time in
Phase
(min.)

 Plan Total
Actual

 To Date
%

 Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Postmortem
 Total

Defects In-
jected

 Actual Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Total

Defects
Removed

 Actual Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Total

112

Table 10: CSP0 Project Plan Summary Instructions

Purpose This form holds the estimated and actual project data in a conven-
ient and readily retrievable form

Header Enter the following:
• = Your name and today’s date.
• = The program name and number.
• = The instructor’s name.
• = The language you used to write the program.

Time in Phase • = Under Plan, enter your original estimate of the total development
time.

• = Under Actual, enter the total actual time in minutes spent in each
development phase (should be the sum of the Individual and Col-
laborative time).

• = Under Individual, enter the total actual time spent by any partner in-
dividually

• = Under Collaborative, enter the total actual time spent the partners
collaboratively

• = Under To Date %, enter the percentage of Total time (versus your
plan) in each phase.

Defects In-
jected

• = Under Actual, enter the number of defects injected in each phase
(should be the sum of the Individual and Collaborative defects).

• = Under Individual, enter the total defects time injected by phase when
a partner was working individually

• = Under Individual, enter the total defects time injected by phase when
the partners were working collaboratively

Defects Re-
moved

• = Under Actual, enter the number of defects removed in each phase
(should be the sum of the Individual and Collaborative defects).

• = Under Individual, enter the total defects time removed by phase
when a partner was working individually

• = Under Individual, enter the total defects time removed by phase
when the partners were working collaboratively

113

Table 11: Time Recording Log

Student Date

Instructor Class

Program

Date Start Stop Interrupt
Time

Delta
Time

Phase Collab
or In-
div

Comment

114

Table 12: Time Recording Log Instructions

Purpose This form is for recording the time spent in each project phase.
These data are used to complete the Project Plan Summary

General • = Record all the time you spend on the project.
• = Record the time in minutes.
• = Be as accurate as possible.

Header Enter the following:
• = Your name
• = Today’s date
• = The instructor’s name
• = The number of the program

Date Enter the date when the work was performed.
Example 10/18
Start Enter the time when you start working on a task.
Example 8:20
Stop Enter the time when you stop working on that task.
Example 10:56
Interruption
Time

Record any interruption time that was not spent working on the task and
the reason for the interruption.
If you have several interruptions, enter their total time.

Example 37 min -- took a break
Delta Time Enter the clock time you actually spent working on the task, less the inter-

ruption time.
Example From 8:20 to 10:56, less 37 minutes, or 119 minutes.
Phase Enter the name of the development phase being worked on.
Example Planning, Design, Design Review, Code, Code Review, Compile, Test
Collab or
Indiv

Enter C if the work was performed collaboratively. Enter I if the work
was done individually.

Comments Enter any other pertinent comments that may later remind you of any un-
usual circumstances regarding this activity.

Example “Had a compiler problem, had to get help.”
Important It is important to record all worked time. If you forget to record the starting, stopping, or

interruption time for a task, promptly enter your best estimate of the time.

115

Table 13: Defect Recording Log

Student Date
Instructor Class
Program
Date Def.

Num.
Phase
Injected

Phase
Removed

Fix
Time

Collab
or In-
div

Description

116

Table 14: Defect Recording Log Instructions

Purpose This form is for recording each defect you find and fix.
These data are used to complete the Project Plan Summary

General • = Record all the defects you find in review, compile and test.
• = Record each defect separately and completely.
• = Be as accurate as possible.

Header Enter the following:
• = Your name
• = Today’s date
• = The instructor’s name
• = The number of the program

Number Enter the defect number. For each program, this should be a sequential
number starting with 1.

Phase In-
jected

Enter the phase during which this defect was injected. Use your best
judgment.

Phase Re-
moved

Enter the phase during which this defect was removed. This will generally
be the phase during which you found the defect.

Fix Time Enter your best judgment of the time you took to fix the defect. This time
can be determined by using a stop watch or your judgment.

Collab or
Indiv

Using your best judgment, enter C if you believe the defect was injected
during collaborative work. Enter I if you believe the defect was injected
during individual work.

Description Write a succinct description of the defect that is clear enough to later re-
mind you about the error and help you to remember why you made it.

117

Table 15: CSP0.1 Process Script

Phase
Number

Purpose To guide you in collaboratively developing module-level
programs

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty Time and Defect Recording Logs
• = Stop watch (optional)

1 Planning • = Produce or obtain a requirement statement
• = Estimate the total new and changed LOC required
• = Estimate the required development time of both part-

ners
• = Enter the plan data in the Project Plan Summary form
• = Record the time spent in the Time Recording Log for

Planning
2 Development • = Design the program

• = Implement the design
• = Compile the program and fix and log all defects found
• = Test the program and fix and log all defects found
• = Record the time spent in these activities in the Time

Recording Log in the appropriate phase
3 Postmortem • = Complete the Project Plan Summary form with actual

time, defect, and size data
 Exit Criteria • = A thoroughly tested program

• = Completed Project Plan Summary with estimated and
actual data

• = Completed Process Improvement Proposal (PIP)
form

• = Completed Defect and Time Recording Logs

118

Table 16: CSP0.1 Planning Script

Phase
Number

Purpose To guide the CSP planning process

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty Time Recording Log

1 Program Re-
quirements

• = Produce or obtain a requirements statement for the pro-
gram

• = Ensure the requirements statement is clear and unambi-
guous

• = Resolve any questions
2 Size Estimate • = Make your best estimate of the total new and changed

LOC required to develop this program
3 Resource Es-

timate
• = Make your best estimate of the time (for both partners)

required to develop this program

• = Make your best estimate of the total new and changed
LOC required to develop this program

 Exit Criteria • = A documented requirements statement
• = Estimated development time and program size data

entered in the Project Plan Summary
• = Actual time spent planning entered in the Time Re-

cording Log

119

Table 17: CSP0.1 Development Script

Phase
Number

Purpose To guide the development of small programs

 Entry criteria • = Requirements statement
• = Project Plan Summary with planning completed
• = Time and Defect Recording Logs with planning com-

pleted
• = Coding Standard.

Note: The terms driver and non-driver are used below. The driver is the partner who
has control of the recording medium (ex: paper, computer keyboard) and is recording
the design or implementing code or fixing code. The non-driver is the other partner who
is actively observing the driver -- identifying defects, giving suggestions, etc. When a
partner is working alone, he or she is considered the driver, and no one is filling the
non-driver role.
1 Design • = Review the requirements and produce a design to meet

them via discussions between partners.
• = The driver records the design in pre-determined for-

mat/on pre-determined medium.
• = The non-driver observes to ensure the design is being

recorded efficiently and effectively meets the require-
ments. The non-driver identifies defects and gives
suggestions for alternative designs.

• = Periodically, switch drivers.
• = Record design time in the Time Recording Log

2 Code • = Implement the design following the Coding Standard.
• = The driver implements the design by typing code via

the keyboard.
• = The non-driver is observes to ensure the code properly

implements the design, and conforms to the Coding
Standard, identifying defects whenever necessary and
giving suggestions for alternative implementations.

• = Periodically, switch drivers.
• = Record any requirements or design defects in the De-

fect Recording Log
• = Record coding time in the Time Recording Log

3 Compile • = Compile the program until error-free.
• = Both partners identify and discuss all defects found and

the possible implications of these defects elsewhere in
the code.

• = The driver implements the code changes by fixing code
via the keyboard.

120

• = The non-driver observes to ensure the fix is properly
implemented, identifying erroneous fix implementa-
tions.

• = Periodically, switch drivers.
• = Record all defects found in Defect Recording Log
• = Record compile time (until program compiles error-

free) in the Time Recording Log
4 Test • = Test until all tests cases run without error

• = Both partners identify and discuss all defects found and
the possible implications of these defects elsewhere in
the code.

• = The driver implements the code changes by fixing code
via the keyboard.

• = The non-driver observes to ensure the fix is properly
implemented, identifying erroneous fix implementa-
tions.

• = Periodically, switch drivers.
• = Record defects in the Defect Recording Log
• = Record test time (until all test cases run error-free) in

the Time Recording Log
 Exit Criteria • = A thoroughly tested program that conforms to the

Coding Standard
• = Completed Defect Recording Log
• = Completed Time Recording Log

121

Table 18: CSP0.1 Postmortem Script

Phase
Number

Purpose To guide the CSP postmortem process

 Entry criteria • = Problem description and requirements statement.
• = Project Plan Summary with planned program size and

planned development time.
• = Completed Time Recording Log
• = Completed Defect Recording Log
• = A tested and running program that conforms to the

Coding Standard
1 Defects In-

jected
• = Determine from the Defect Recording Log the number

of defects injected in each phase.
• = Enter this number under Defects Injected -- Actual on

the Project Plan Summary
2 Defects Re-

moved
• = Determine from the Defect Recording Log the number

of defects removed in each phase.
• = Enter this number under Defects Removed -- Actual on

the Project Plan Summary
3 Size • = Count the LOC in the completed program.

• = Determine the base, reused, deleted, modified, added,
total, total new and changed, and new reused LOC

• = Enter these data on the Project Plan Summary.
4 Time • = Review the completed Time Recording Log

• = Enter the total time spent in each phase under Actual
on the Project Plan Summary

 Exit Criteria • = A fully tested program that conforms to the Coding
Standard

• = Completed Project Plan Summary Form
• = Completed PIP form describing process problems,

improvement suggestions, and what went well.
• = Completed Defect Recording Log and Time Recording

Log

122

Table 19: CSP0.1 and CSP 1.0 Project Plan Summary

Student Date
Program Program #
Instructor Language

Program
Size (LOC)

 Plan Actual To Date

Base(B)
 Deleted(D)
 Modified(M)
 Added(A)
 (T - B + D - R)

 Reused(R)
Total New
and
Changed(N)
(A + M)

Total LOC (T)
Total New
Reused

Time in
Phase
(min.)

 Plan Total
Actual

 To Date
%

 Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Postmortem
 Total

Defects In-
jected

 Actual Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Total

123

Defects
Removed

 Actual Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Total

124

Table 20: CSP0.1 and CSP 1.0 Project Plan Summary Instructions

Purpose This form holds the estimated and actual project data in a conven-
ient and readily retrievable form

Header Enter the following:
• = Your name and today’s date.
• = The program name and number.
• = The instructor’s name.
• = The language you used to write the program.

Program Size
(LOC)

Prior to Development:
• = If you are modifying or enhancing an existing program, count that

program’s LOC and enter it under Base – Actual
• = Using your best judgment, estimate the new and changed LOC you

expect to develop
After Development:
• = If the base LOC (B) has changed, enter the new value
• = Measure the total program size and enter it under Total LOC (T) –

Actual
• = Review your source code and determine the actual LOC that were

deleted (D), modified (M), or reused (R). Enter these in the appro-
priate Actual row.

• = Calculate the LOC of added code as A = T – B + D – R
• = Calculate the total new and changed LOC as N = A + M.

Time in Phase • = Under Plan, enter your original estimate of the total development
time and the time required by phase.

• = Under Actual, enter the total actual time in minutes spent in each
development phase (should be the sum of the Individual and Col-
laborative time).

• = Under Individual, enter the total actual time spent by any partner in-
dividually

• = Under Collaborative, enter the total actual time spent the partners
collaboratively

• = Under To Date %, enter the percentage of Total time (versus your
plan) in each phase.

Defects In-
jected

• = Under Actual, enter the number of defects injected in each phase
(should be the sum of the Individual and Collaborative defects).

• = Under Individual, enter the total defects time injected by phase when
a partner was working individually

• = Under Individual, enter the total defects time injected by phase when
the partners were working collaboratively

Defects Re-
moved

• = Under Actual, enter the number of defects removed in each phase
(should be the sum of the Individual and Collaborative defects).

125

• = Under Individual, enter the total defects time removed by phase
when a partner was working individually

• = Under Individual, enter the total defects time removed by phase
when the partners were working collaboratively

126

Table 21: Process Improvement Proposal (PIP)

Student Date
Instructor Program #
Process CSP Level
PIP Number Problem Description and Proposed Solution

Describe what worked about your process during this program.

Notes and Comments

127

Table 22: Process Improvement Proposal (PIP) Instructions

Purpose • = To provide a way to record process problems and improvement
ideas

• = To provide an orderly record of your process improvement ideas for
use in later process improvement

• = To provide an orderly record of what you found beneficial during
this program cycle so these things can be continued, as appropriate,
in future cycles

General Use the PIP form as follows:
• = To record process improvement ideas as they occur to you
• = To record beneficial process steps as you complete them
• = To record lessons learned and unusual conditions
Keep PIP forms on hand while using the CSP
• = Record process problems even without proposed solutions.
• = Retain the PIPs for use in future process improvements

Header • = Enter your name, the date, the instructor’s name, and the program
number or other project designation.

• = Enter the name of the process you are using (such as CSP0.1)
Problem and
Proposed So-
lution

Number the problems in each form in the left hand column. Start with
number 1 on each PIP.
Describe the problem as clearly as possible:

• = The difficulty encountered
• = The impact on the product, the process, and you.
• = Describe the proposed process improvement as explicitly as pos-

sible.
• = Where possible, reference the specific process element and the

words or entries to be changed.
• = If you feel a proposed improvement is particularly important,

describe its priority and explain why.
What
Worked

Briefly describe process steps that proved beneficial to the project out-
come. Be sure to describe when a process step prescribed in the CSP
was altered, which yielded beneficial results.

Notes and
Comments

For each product, complete at least one PIP form with overall comments
about the process:

• = Record the process lessons learned.
• = Note any conditions you need to remember to later determine

why the process worked particularly well or poorly.

128

Table 23: C++ Coding Standard

Purpose To guide the development of C++ programs
Program
Headers

//

*
 // Program Assignment: the Program Number
 // Name(s): your names
 // Date: the date the program development STARTED
 // Description: a short description of the program function
 // **
**

Identifiers Use descriptive names for all variables, function names, constants, and
other identifiers. Avoid abbreviations or single-letter variables

Identifier Ex-
ample

int number_of_students; // This is GOOD
float x4, j, ftave; // These are BAD

Comments • = Document the code so that the reader can understand its operation.
The more self-documenting your code is via meaningful variable
names and proper spacing, the less comments will be needed to un-
derstand its purpose

• = Comments should explain both the purpose and behavior of the
code, particularly at the beginning of function declarations in the
header file.

• = Comment variable declarations to indicate their purpose.

Good Com-
ment

if (record_count) > limit) // have all the records been processed?

Useless Com-
ment

if (record_count) > limit) // check if record_count greater than limit

Blank Spaces • = Write programs with sufficient spacing so that they do not appear
crowded.

• = Separate every program construct with at least one space.

Indenting • = Indent every level of brace from the previous one.
• = Open and close braces should be on lines by themselves and

aligned with each other.
Indenting Ex-
ample

while (miss_distance > threshold)
{
 success_code = move_robot(target_location);
 if (success_code == MOVE_FAILED)
 {
 cout << "The robot move has failed." << endl;
 }

129

}
Capitalization • = Capitalize all #define's

• = Lowercase all other identifers and reserved words.
• = Messages being output to the user can be mixed-case as to make a

clean user presentation.

Capitalization
Example

#define DEFAULT-NUMBER-OF-STUDENTS 15
int class_size = DEFAULT-NUMBER-OF-STUDENTS

Class Declara-
tion and
Definition

• = All class data members must be private.
• = Public "getter" and "setter" accessor methods should be imple-

mented to allow access to private data members, as appropriate.
Instance Vari-
ables

• = There is a unique copy of each ariable for each instance of a class.
Since every instance has its own copy, append "my" to the variable
name.

• = Variable names should indicate the purpose of the variable.
• = The first letter of every word (except "my") is capitalized.
• = Examples: myAccount, myLastName, myMiddleInitial

Static/Class
Variables

• = There is one copy of static variables that is shared by all instances
of a class. Append "our" to the beginning of each static variable
name to remind yourself every time they are used that they are
shared.

• = Variable names should indicate the purpose of the variable.
• = The first letter of every word (except "our") is capitalized.
• = Examples: ourNumberOfInstances, ourTotalCost, ourFileHandle

Class Declara-
tion Example

class Student
{
public:
 string getFirstName();
 void setFirstName(string name);
 string getLastName();
 void setLastName(string name);
 int getNumStudents();
 void setNumStudents(int number);
private:
 string myFirstName;
 string myLastName;
 static int ourNumStudents;
};

130

Table 24: CSP1.0 Process Script

 Phase
Number

Purpose To guide you in collaboratively developing module-level
programs

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty Time and Defect Recording Logs
• = Stop watch (optional)

1 Planning • = Produce or obtain a requirement statement
• = Analyze the requirements statement via the develop-

ment of a thorough set of use cases.
• = Estimate the total new and changed LOC required
• = Estimate the required development time of both part-

ners
• = Enter the plan data in the Project Plan Summary form
• = Record the time spent in the Time Recording Log for

Planning
2 Development • = Perform a CRC card exercise in order to develop a

preliminary high-level design.
• = Design the program
Perform the steps below iteratively:
• = Implement the design
• = Compile the program and fix and log all defects found
• = Test the program and fix and log all defects found
• = Record the time spent in these activities in the Time

Recording Log in the appropriate phase
3 Postmortem • = Complete the Project Plan Summary form with actual

time, defect, and size data
 Exit Criteria • = A thoroughly tested program

• = Completed Project Plan Summary with estimated and
actual data

• = Completed Process Improvement Proposal (PIP) form
• = Completed Defect and Time Recording Logs

131

Table 25: CSP1.0 and CSP 1.1 Planning Script

Phase
Number

Purpose To guide the CSP planning process

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty Time Recording Log

1 Program Re-
quirements

• = Produce or obtain a requirements statement for the pro-
gram

• = Ensure the requirements statement is clear and unambi-
guous

• = Analyze the program requirements by producing a
comprehensive set of Use Cases for the set of re-
quirements. Complete the Use Case Flow-of-Events
template for each use case.

• = Resolve any questions
2 Size Estimate • = Make your best estimate of the total new and changed

LOC required to develop this program
3 Resource Es-

timate
• = Make your best estimate of the time (for both partners)

required to develop this program

• = Make your best estimate of the total new and changed
LOC required to develop this program

 Exit Criteria • = A documented requirements statement
• = Completed Use Case Flow-of-Events templates for

each use case.
• = Estimated development time and program size data en-

tered in the Project Plan Summary
• = Actual time spent planning entered in the Time Re-

cording Log

132

Table 26: CSP1.0 Development Script

Phase
Number

Purpose To guide the development of small programs

 Entry criteria • = Requirements statement
• = Project Plan Summary with planning completed
• = Time and Defect Recording Logs with planning com-

pleted
• = Coding Standard.

Note: The terms driver and non-driver are used below. The driver is the partner who
has control of the recording medium (ex: paper, computer keyboard) and is recording
the design or implementing code or fixing code. The non-driver is the other partner who
is actively observing the driver -- identifying defects, giving suggestions, etc. When a
partner is working alone, he or she is considered the driver, and no one is filling the
non-driver role.
1 Design • = Review the requirements and

• = Produce a design to meet the requirements by perform-
ing a CRC card exercise with partners and/or
members of the product team.

• = Include in your design a class diagram that lists the
properties and methods of each class and demon-
strates which other classes the class is dependent
upon for services/information.

• = The driver records the design in pre-determined for-
mat/on pre-determined medium.

• = The non-driver observes to ensure the design is being
recorded efficiently and effectively meets the require-
ments. The non-driver identifies defects and gives
suggestions for alternative designs.

• = Periodically, switch drivers.
• = Record design time in the Time Recording Log

Perform Code, Compile and Test (below) iteratively. Choose an element of the design
and code it, compile it and test it before choosing another element of the design to
implement.
2 Code • = Implement the design following the Coding Standard.

• = The driver implements the design by typing code via
the keyboard.

• = The non-driver is observes to ensure the code properly
implements the design, and conforms to the Coding
Standard, identifying defects whenever necessary and
giving suggestions for alternative implementations.

• = Periodically, switch drivers.
• Record any requirements or design defects in the De-

133

fect Recording Log
• = Record coding time in the Time Recording Log

3 Compile • = Compile the program until error-free.
• = Both partners identify and discuss all defects found and

the possible implications of these defects elsewhere in
the code.

• = The driver implements the code changes by fixing code
via the keyboard.

• = The non-driver observes to ensure the fix is properly
implemented, identifying erroneous fix implementa-
tions.

• = Periodically, switch drivers.
• = Record all defects found in Defect Recording Log
• = Record compile time (until program compiles error-

free) in the Time Recording Log
4 Test • = Test until all tests cases run without error

• = Both partners identify and discuss all defects found and
the possible implications of these defects elsewhere in
the code.

• = The driver implements the code changes by fixing code
via the keyboard.

• = The non-driver observes to ensure the fix is properly
implemented, identifying erroneous fix implementa-
tions.

• = Periodically, switch drivers.
• = Record defects in the Defect Recording Log
• = Record test time (until all test cases run error-free) in

the Time Recording Log
 Exit Criteria • = A thoroughly tested program that conforms to the Cod-

ing Standard
• = Completed Defect Recording Log
• = Completed Time Recording Log

134

Table 27: CSP1.0 Postmortem Script

Phase
Number

Purpose To guide the CSP postmortem process

 Entry criteria • = Problem description and requirements statement.
• = Project Plan Summary with planned program size and

planned development time.
• = Completed Time Recording Log
• = Completed Defect Recording Log
• = A tested and running program that conforms to the

Coding Standard
1 Defects In-

jected
• = Determine from the Defect Recording Log the number

of defects injected in each phase.
• = Enter this number under Defects Injected -- Actual on

the Project Plan Summary
2 Defects Re-

moved
• = Determine from the Defect Recording Log the number

of defects removed in each phase.
• = Enter this number under Defects Removed -- Actual on

the Project Plan Summary
3 Size • = Count the LOC in the completed program.

• = Determine the base, reused, deleted, modified, added,
total, total new and changed, and new reused LOC

• = Enter these data on the Project Plan Summary.
4 Time • = Review the completed Time Recording Log

• = Enter the total time spent in each phase under Actual
on the Project Plan Summary

 Exit Criteria • = A fully tested program that conforms to the Coding
Standard

• = Completed Use Case Flow-of-Events templates
• = Completed Project Plan Summary Form
• = Completed PIP form describing process problems, im-

provement suggestions, and what went well.
• = Completed Defect Recording Log and Time Recording

Log

135

Table 28: Use Case Flow of Event Template

Student Date
Instructor Program #
X Flow of Events for the <name> Use Case
X.1 Preconditions

X.2 Main Flow

X.3 Sub-flows (if applicable)

X.4 Alternative Flows (if applicable)

136

Table 29: Use Case Flow of Events Template Instructions

 Purpose • = To systematically develop a description of the events needed to ac-
complish the required behavior of the use case.

• = This flow of events should enumerate what the system should do,
not how the system should do it.

• = The use case should be written in the language of the domain so that
it can be easily read by a customer.

Header • = Enter your name, the date, the instructor’s name, and the program
number or other project designation.

Flow of
Events Num-
ber and
Name

• = Assign each use case has its own number, starting with number 1.
Place this number in the Flow of Events everywhere an X appears in
the template.

• = Assign each use case a short name, which is indicative of the pur-
pose of the use case.

Example: 1.0 Flow of Events for the Customer Transaction Use Case
Preconditions • = Enumerate any data that is needed by the use case

• = Enumerate any flows or subflows that must execute in another use
case before this use case can begin.

Main Flow • = Enumerate the normal sequence of events or the basic start-to-finish
path an actor will follow under normal conditions.

Sub-flows • = Further describe/breakdown the sequence of events in the Main
Flow.

• = Only break the Main Flow into Sub-flows if the complexity war-
rants the breakdown. Resist temptation to develop pseudocode of
the implementation in the subflow.

Alternative
Flows

• = Enumerate infrequently used paths through a scenario, exceptions,
and error conditions.

137

Table 30: CSP1.1 Process Script

 Phase
Number

Purpose To guide you in collaboratively developing module-level
programs

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty Time and Defect Recording Logs
• = Stop watch (optional)

1 Planning • = Produce or obtain a requirement statement
• = Analyze the requirements statement via the develop-

ment of a thorough set of use cases.
• = Estimate the total new and changed LOC required
• = Estimate the required development time of both part-

ners
• = Enter the plan data in the Project Plan Summary form
• = Record the time spent in the Time Recording Log for

Planning
2 Development • = Perform a CRC card exercise in order to develop a pre-

liminary high-level design.
• = Design the program
• = Review the design and fix and log all defects found.
Perform the steps below iteratively:

• = Implement the design
• = Review the code and fix and log all defects found.
• = Compile the program and fix and log all defects found
• = Test the program and fix and log all defects found
• = Record the time spent in these activities in the Time

Recording Log in the appropriate phase
3 Postmortem • = Complete the Project Plan Summary form with actual

time, defect, and size data
 Exit Criteria • = A thoroughly tested program

• = Completed Project Plan Summary with estimated and
actual data

• = Completed Design Review and Code Review Check-
lists.

• = Completed Process Improvement Proposal (PIP) form
• = Completed Defect and Time Recording Logs

138

Table 31: CSP1.1 and CSP2.0 Development Script

Phase
Number

Purpose To guide the development of small programs

 Entry criteria • = Requirements statement
• = Project Plan Summary with planning completed
• = Time and Defect Recording Logs with planning com-

pleted
• = Coding Standard.

Note: The terms driver and non-driver are used below. The driver is the partner who
has control of the recording medium (ex: paper, computer keyboard) and is recording
the design or implementing code or fixing code. The non-driver is the other partner who
is actively observing the driver -- identifying defects, giving suggestions, etc. When a
partner is working alone, he or she is considered the driver, and no one is filling the
non-driver role.
1 Design • = Review the requirements and

• = Produce a design to meet the requirements by perform-
ing a CRC card exercise with partners and/or members
of the product team.

• = Include in your design a class diagram that lists the
properties and methods of each class and demonstrates
which other classes the class is dependent upon for ser-
vices/information.

• = The driver records the design in pre-determined for-
mat/on pre-determined medium.

• = The non-driver observes to ensure the design is being
recorded efficiently and effectively meets the require-
ments. The non-driver identifies defects and gives
suggestions for alternative designs.

• = Periodically, switch drivers.
• = Record design time in the Time Recording Log

2 Design Re-
view

• = Follow the Design Review Checklist and review the
design.

• = Fix all defects found.
• = Record defects in Defect Recording Log
• = Record Design Review time in Time Recording Log

3 Prepare Test
Cases

• = Prepare a preliminary set of test cases using the Test
Case Template. The test case should validate that all
requirements have been properly implemented and
possible error conditions have been properly han-
dled. (Details that are not yet know can be completed
after code development.) Use the Unit Test Checklist
to ensure test coverage.

139

• = Fix any design defects surfaced by writing the test
cases. Record these defects in the Defect Recording
Log.

• = Record test development time as Testing time in the
Time Recording Log.

Perform Code, Compile and Test (below) iteratively. Choose an element of the design
and code it, compile it and test it before choosing another element of the design to im-
plement.
4 Code • = Implement the design following the Coding Standard.

• = The driver implements the design by typing code via
the keyboard.

• = The non-driver is observes to ensure the code properly
implements the design, and conforms to the Coding
Standard, identifying defects whenever necessary and
giving suggestions for alternative implementations.

• = Periodically, switch drivers.
• = Record any requirements or design defects in the De-

fect Recording Log
• = Record coding time in the Time Recording Log

5 Code Review • = Using the Code Review Checklist and review the code.
• = Fix all defects found.
• = Record defects in the Defect Recording Log
• = Record Code Review time in Time Recording Log.

6 Compile • = Compile the program until error-free.
• = Both partners identify and discuss all defects found and

the possible implications of these defects elsewhere in
the code.

• = The driver implements the code changes by fixing code
via the keyboard.

• = The non-driver observes to ensure the fix is properly
implemented, identifying erroneous fix implementa-
tions.

• = Periodically, switch drivers.
• = Record all defects found in Defect Recording Log
• = Record compile time (until program compiles error-

free) in the Time Recording Log
7 Test • = Develop additional test cases using the Test Case

Template. Complete any additional, new information on
previously developed test cases. Use the Unit Test Check-
list to ensure test coverage.
• = Add new test cases to an ever-enlarging set of regres-
sion tests.
• = Test until all tests cases (including all regression

tests) run without error

140

• = Record the results running test case on the Test Case
Template.

• = Both partners identify and discuss all defects found and
the possible implications of these defects elsewhere in
the code.

• = The driver implements the code changes by fixing code
via the keyboard.

• = The non-driver observes to ensure the fix is properly
implemented, identifying erroneous fix implementa-
tions.

• = Periodically, switch drivers.
• = Record defects in the Defect Recording Log
• = Record test time (until all test cases run error-free) in

the Time Recording Log
 Exit Criteria • = A thoroughly tested program that conforms to the Cod-

ing Standard
• = Completed Design Review and Code Review Check-

lists.
• = Completed Unit Test Checklists
• = Completed Defect Recording Log
• = Completed Time Recording Log

141

Table 32: CSP1.1 and CSP2.0 Postmortem Script

Phase
Number

Purpose To guide the CSP postmortem process

 Entry criteria • = Problem description and requirements statement
• = Project Plan Summary with planned program size and

planned development time
• = Completed Design Review and Code Review Check-

lists
• = Completed Unit Test Checklists
• = Completed Time Recording Log
• = Completed Defect Recording Log
• = A tested and running program that conforms to the

Coding Standard
1 Defects In-

jected
• = Determine from the Defect Recording Log the number

of defects injected in each phase.
• = Enter this number under Defects Injected -- Actual on

the Project Plan Summary
2 Defects Re-

moved
• = Determine from the Defect Recording Log the number

of defects removed in each phase.
• = Enter this number under Defects Removed -- Actual on

the Project Plan Summary
3 Size • = Count the LOC in the completed program.

• = Determine the base, reused, deleted, modified, added,
total, total new and changed, and new reused LOC

• = Enter these data on the Project Plan Summary.
4 Time • = Review the completed Time Recording Log

• = Enter the total time spent in each phase under Actual
on the Project Plan Summary

 Exit Criteria • = A fully tested program that conforms to the Coding
Standard

• = Completed Use Case Flow-of-Events templates
• = Completed Project Plan Summary Form
• = Completed PIP form describing process problems, im-

provement suggestions, and what went well.
• = Completed Defect Recording Log and Time Recording

Log

142

Table 33: CSP1.1 Project Plan Summary

Student Date
Program Program #
Instructor Language

Summary This

Program
 Programs

to Date

Defects/
KLOC

Yield %
% Appraisal
COQ

% Failure
COQ

COQ A/F
Ratio

Program
Size (LOC)

 Plan Actual To Date

Base(B)
 Deleted(D)
 Modified(M)
 Added(A)
 (T - B + D - R)

 Reused(R)
Total New
and
Changed(N)
(A + M)

Total LOC (T)
Total New
Reused

Time in
Phase
(min.)

 Plan Total
Actual

 To Date
%

 Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Postmortem
 Total

143

Defects In-
jected

 Actual Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Total

Defects
Removed

 Actual Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Total

Defect Re-
moval
Efficiency
(Defects/Hour)

 This Pro-
gram

 Programs to
Date

Design Re-
view

Code Re-
view

Compile
Test

Defect Re-
moval
Leverage
(vs Test)

Design Re-
view

Code Re-
view

Compile

144

Table 34: CSP1.1 Project Plan Summary Instructions

Purpose This form holds the estimated and actual project data in a conven-
ient and readily retrievable form

Header Enter the following:
• = Your name and today’s date
• = The program name and number
• = The instructor’s name
• = The language you used to write the program

Summary • = Enter the actual and to date defect data
• = Enter the actual and to date yield
• = Enter the actual and to date Appraisal Cost of Quality: the per-

centage of development time spent in compile and test
• = Enter the actual and to date Failure Cost Of Quality: the percent-

age of development time spent in compile and test
• = Enter the A/F Ratio: the ratio of Appraisal COQ divided by Fail-

ure COQ
Program Size
(LOC)

Prior to Development:
• = If you are modifying or enhancing an existing program, count that

program’s LOC and enter it under Base – Actual
• = Using your best judgment, estimate the new and changed LOC you

expect to develop
After Development:
• = If the base LOC (B) has changed, enter the new value
• = Measure the total program size and enter it under Total LOC (T) –

Actual
• = Review your source code and determine the actual LOC that were

deleted (D), modified (M), or reused (R). Enter these in the appro-
priate Actual row.

• = Calculate the LOC of added code as A = T – B + D – R
• = Calculate the total new and changed LOC as N = A + M.

Time in Phase • = Under Plan, enter your original estimate of the total development
time and the time required by phase.

• = Under Actual, enter the total actual time in minutes spent in each
development phase (should be the sum of the Individual and Col-
laborative time).

• = Under Individual, enter the total actual time spent by any partner in-
dividually

• = Under Collaborative, enter the total actual time spent the partners
collaboratively

• = Under To Date %, enter the percentage of Total time (versus your
plan) in each phase.

145

Defects In-
jected

• = Under Actual, enter the number of defects injected in each phase
(should be the sum of the Individual and Collaborative defects).

• = Under Individual, enter the total defects time injected by phase when
a partner was working individually

• = Under Individual, enter the total defects time injected by phase when
the partners were working collaboratively

Defects Re-
moved

• = Under Actual, enter the number of defects removed in each phase
(should be the sum of the Individual and Collaborative defects).

• = Under Individual, enter the total defects time removed by phase
when a partner was working individually

• = Under Individual, enter the total defects time removed by phase
when the partners were working collaboratively

Defect Re-
moval
Efficiency

• = Under This Program, enter the actual efficiencies (defects/hour)
achieved for this program

• = Under Programs To Date, enter the actual efficiencies (de-
fects/hour) achieved for all programs to date

Defect Re-
moval
Leverage

• = Under This Program, enter the actual leverage (defects/hour of
this phase divided by defects/hour test) achieved for this program

• = Under Programs To Date, enter the actual leverage (defects/hour
of this phase divided by defects/hour test) achieved for all pro-
grams to date

146

Table 35: Individual Code Review Checklist

Purpose To guide you in conducting an effective code review
General • = As you complete each review step, check off that item.

• = Complete the checklist for one program unit before you start to the
review the next.

Complete Verify that the code is a complete and correct implementation of the
design.

Standards Ensure the code conforms to the C++ coding standards
Include Verify that all includes are complete
Line-by-line
check

Check every line of code for:
• = instruction syntax
• = proper punctuation

Initialization Check variable and parameter initialization:
• = At program initiation
• = At start of every loop
• = At function entry

Calls Check function call formats:
• = Pointers
• = Parameters
• = Arrays
• = Use of &

{} pairs Ensure the {} are proper and matched
Logic
Operators

• = Verify the proper use of ==, =, || and so on
• = Check every logic test for proper ()

Classes and
Functions

• = Class declarations end with ;
• = Ensure all functions are defined before they are used or properly

defined in a .h file
• = The scope resolution operator :: is used properly in class functions

definitions.
Names Check name spelling and use:

• = Is it consistent?
• = Is it within the declared scope?
• = Do all structures and classes use '.' or '->' references properly?

Pointers Check that:
• = pointers are initialized to NULL
• = pointers are declared only after new
• = new pointers are always deleted after use

Output Format Check the output format:
• = Line stepping is proper
• = Spacing is proper

File Open and Verify that all files are:

147

Close • = properly declared
• = properly opened
• = properly closed

148

Table 36: Collaborative Code Review Checklist

Purpose To guide you in conducting an effective code review
General • = As you complete each review step, check off that item.

• = Complete the checklist for one program unit before you start to the
review the next.

Complete Verify that the code is a complete and correct implementation of the
design.

Standards Ensure the code conforms to the C++ coding standards

149

Table 37: Individual Design Review Checklist

Purpose To guide you through an effective Design Review
General • = As you complete each review step, check off that item

• = Complete the checklist for one program unit before you start to re-
view the next

Completeness Ensure that the requirements and specifications are completely and cor-
rectly covered by the design:
• = All specified outputs are produced
• = All needed inputs are furnished
• = All required includes are stated

Class Design • = All data members are private with public getters/setters where nec-
essary and prudent

• = Data Connectedness: Can you traverse the network of collabora-
tions between the classes to gather all the information you need to
deliver the services based on a representative set of scenarios?

• = Abstraction: Does the name of each class convey its abstractions?
Does the abstraction have a natural meaning and use in the do-
main?

• = Responsibility Alignment: Do the name, main responsibility state-
ment data and functions in each class align?

Logic • = All program sequences are in the proper order
• = Recursion unwinds properly and terminates
• = All loops are properly initiated, incremented and terminated

Modularity • = Ensure the proper use of functions to modularize program steps.
• = Ease of reading
• = Repetitive steps

Special Cases Check all special cases:
• = Ensure proper operation with empty, full, minimum, maximum,

negative, and zero values for all variables
• = Protect against out-of-limits, overflow, underflow conditions
• = Ensure “impossible” conditions are absolutely impossible
• = Handle all incorrect input conditions

150

Table 38: Collaborative Design Review Checklist

Purpose To guide you through an effective Design Review
General • = As you complete each review step, check off that item

• = Complete the checklist for one program unit before you start to re-
view the next

Completeness Ensure that the requirements and specifications are completely and cor-
rectly covered by the design:
• = All specified outputs are produced
• = All needed inputs are furnished
• = All required includes are stated

Class Design • = All data members are private with public getters/setters where nec-
essary and prudent

• = Data Connectedness: Can you traverse the network of collabora-
tions between the classes to gather all the information you need to
deliver the services based on a representative set of scenarios?

• = Abstraction: Does the name of each class convey its abstractions?
Does the abstraction have a natural meaning and use in the do-
main?

• = Responsibility Alignment: Do the name, main responsibility state-
ment data and functions in each class align?

Special Cases Check all special cases:
• = Ensure proper operation with empty, full, minimum, maximum,

negative, and zero values for all variables
• = Protect against out-of-limits, overflow, underflow conditions
• = Ensure “impossible” conditions are absolutely impossible
• = Handle all incorrect input conditions

151

Table 39: Test Case Template

Student Date
Instructor Program #
Test Case
Number

Test Objective Test Description Expected Re-
sults

Actual Results

152

Table 40: Test Case Template Instructions

 Purpose • = To systematically document test cases necessary to thoroughly vali-
date the desired behaviors of the program

Header • = Enter your name, the date, the instructor’s name, and the program
number or other project designation.

Test Number Identify each test case with a unique number.
Test Objec-
tive

• = Briefly describe the objective for running the test case
• = Example: linear regression with normal input

Test Descrip-
tion

• = Describe each test’s data and procedures in sufficient detail to per-
mit it to be run or re-run by someone other than yourself

• = At this time, it is not acceptable to write, “run linear regression with
normal input.” You must indicate specific function calls or data that
should be input into the program to force the conditions you want to
test.

Expected Re-
sults

• = List the exact results the test should produce if it runs properly.

Actual Re-
sults

• = List the results that were actually produced when the test is run.
• = When the same test is run multiple times while fixing multiple de-

fects, note the results of each test.
• = Example:

o Run 1:
o Run 2:
o Run 3:

153

Table 41: Test Coverage Checklist

Purpose To guide you in reviewing the completeness of your test cases
Black Box Testing
Complete Does each requirement have it’s own test case?
Equivalence
Class Partition-
ing

Have you developed an equivalence class representing the set of valid
or invalid input conditions for each test case:
• = If the input for the test case:

• = can be a range of values, try one valid input value and two dif-
ferent invalid input values

• = must be a specific value, try the valid input value and two dif-
ferent invalid input values

• = must be any of a set of values, try one valid value and one in-
valid value

• = is a boolean, try both true and false
Boundary
Value Analysis

Have you performed boundary analysis on the input conditions for
each test case
If the input for the test case:
• = can be a range of values from a to b, try a, b, a-1, and b+1 (if inte-

gers -- otherwise slightly less than a an slightly more than b)
• = must be any of a set of values, test with the min of the set, the max

of the set, the min-1 and the max+1
• = is a boolean, try both true and false

Scenario Test-
ing

Do you have test cases that run through a representative set of cus-
tomer scenarios?

Data Do you have test cases that check for the wrong kind of data -- for ex-
ample a negative price?

White Box Testing
Basis Path
Testing

Has each line of code been executed with at least one test case?
• = Draw the flowgraph of a module.
• = Compute the minimum number of tests necessary to exercise

each line of code by calculating the cyclomatic complexity
V(G) using any one of the formulas below

o V(G) = the number of regions in the graph OR
o V(G) = E - N + 2 (where E= number of edges and N =

number of nodes) OR
o V(G) = P + 1 (where P = number of predicate nodes)

Ensure test cases are written to execute each line of code

154

Loop Testing Where n is the maximum number of allowable passes through the
loop, write test cases to:
• = Skip the loop entirely
• = Make only one pass through the loop
• = Make two passes through the loop
• = Make m passes through the loop, where m < n
• = Make n-1, n, and n+1 passes through the loop

File Interface Have you checked for:
• = proper file attributes
• = opening and closing files
• = eof handling

Error Handling Have you tried error handling routines?
• = Are error descriptions meaningful?
• = Do error descriptions match the error conditions?
• = Are there any spelling mistakes in messages?

Object Oriented
Testing

If you have a class hierarchy, have you tested each of the inherited
methods in the context of each inherited class?

Misc • = Have you exercised any possible underflow or overflow condi-
tions?

• = Has a list of common errors been used to write test cases to detect
errors that have occurred frequently in the past

• = Do the test cases make hand checks easy?

155

Table 42: CSP2.0 Process Script

 Phase
Number

Purpose To guide you in collaboratively developing module-level
programs

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty PROBE Size Estimating Template.
• = Historical estimate and actual size and time data.
• = Empty Time and Defect Recording Logs
• = Stop watch (optional)

1 Planning • = Produce or obtain a requirement statement
• = Analyze the requirements statement via the develop-

ment of a thorough set of use cases.
• = Use the PROBE method to estimate the total new and

changed LOC required
• = Use the PROBE method to estimate the required de-

velopment time of both partners
• = Enter the plan data in the Project Plan Summary form
• = Record the time spent in the Time Recording Log for

Planning
2 Development • = Perform a CRC card exercise in order to develop a pre-

liminary high-level design.
• = Design the program
• = Review the design and fix and log all defects found.
Perform the steps below iteratively:

• = Implement the design
• = Review the code and fix and log all defects found.
• = Compile the program and fix and log all defects found
• = Test the program and fix and log all defects found
• = Record the time spent in these activities in the Time

Recording Log in the appropriate phase
3 Postmortem • = Complete the Project Plan Summary form with actual

time, defect, and size data
 Exit Criteria • = A thoroughly tested program

• = Completed Project Plan Summary with estimated and
actual data

• = Completed PROBE worksheet.
• = Completed Design Review and Code Review Check-

lists.
• = Completed Process Improvement Proposal (PIP) form
• = Completed Defect and Time Recording Logs

156

Table 43: CSP2.0 Planning Script

Phase
Number

Purpose To guide the CSP planning process

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty PROBE Size Estimating Template
• = Historical estimated and actual size and resource data
• = Empty Time Recording Log

1 Program Re-
quirements

• = Produce or obtain a requirements statement for the pro-
gram

• = Ensure the requirements statement is clear and unambi-
guous

• = Analyze the program requirements by producing a
comprehensive set of Use Cases for the set of re-
quirements. Complete the Use Case Flow-of-Events
template for each use case.

• = Resolve any questions
2 Size Estimate • = Produce a program conceptual design.

• = Use the PROBE method to estimate of the total new
and changed LOC required to develop this program

• = Estimate the base, added, deleted, modified, and re-
used LOC

• = Complete the Size Estimating Template and the Pro-
ject Plan Summary

3 Resource Es-
timate

• = Based on the time required per LOC on previous pro-
grams, estimate of the time (for both partners) required
to develop this program

• = Make your best estimate of the total new and changed
LOC required to develop this program

 Exit Criteria • = A documented requirements statement
• = Completed Use Case Flow-of-Events templates for

each use case.
• = The program conceptual design
• = Completed Size Estimating Template
• = Estimated development time and program size data en-

tered in the Project Plan Summary
• = Actual time spent planning entered in the Time Re-

cording Log

157

Table 44: CSP2.0 and CSP2.1 Project Plan Summary

Student Date
Program Program #
Instructor Language

Summary This

Program
 Programs

to Date

LOC/Hour
Planned Time
Actual Time
CPI
(Cost-
Performance
Index)

Defects/
KLOC

Yield %
% Appraisal
COQ

% Failure
COQ

COQ A/F
Ratio

Program
Size (LOC)

 Plan Actual To Date

Base(B)
 Deleted(D)
 Modified(M)
 Added(A)
 (T - B + D - R)

 Reused(R)
Total New
and
Changed(N)
(A + M)

Total LOC (T)
Total New
Reused

Time in
Phase
(min.)

 Plan Total
Actual

 To Date
%

 Individual Collaborative

 Planning

158

 Design
 Code
 Compile
 Test
 Postmortem
 Total

Defects In-
jected

 Actual Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Total

Defects
Removed

 Actual Individual Collaborative

 Planning
 Design
 Code
 Compile
 Test
 Total

Defect Re-
moval
Efficiency
(Defects/Hour)

 This Pro-
gram

 Programs to
Date

Design Re-
view

Code Re-
view

Compile
Test

Defect Re-
moval
Leverage
(vs Test)

Design Re-
view

159

Code Re-
view

Compile

160

Table 45: CSP2.0 and CSP2.1 Project Plan Summary Instructions

Purpose This form holds the estimated and actual project data in a conven-
ient and readily retrievable form

Header Enter the following:
• = Your name and today’s date
• = The program name and number
• = The instructor’s name
• = The language you used to write the program

Summary • = Enter the new and changed LOC per hour for this program and
for all programs developed to date.

• = Enter the actual and to date defect data
• = Enter the actual and to date yield
• = Enter the actual and to date Appraisal Cost of Quality: the percent-

age of development time spent in compile and test
• = Enter the actual and to date Failure Cost Of Quality: the percentage

of development time spent in compile and test
• = Enter the A/F Ratio: the ratio of Appraisal COQ divided by Failure

COQ
Program Size
(LOC)

Prior to Development:
• = If you are modifying or enhancing an existing program, count that

program’s LOC and enter it under Base – Actual
• = From the Size Estimating Template, enter estimated object LOC

(E) under plan.
• = Enter the estimated new and changed LOC (N) from the Size Es-

timating Template.
• = Estimate the numbers of deleted (D) and reused (R) LOC and

combine with the measured base (B) LOC so that
T = N + B – M – D + R

After Development:
• = If the base LOC (B) has changed, enter the new value
• = Measure the total program size and enter it under Total LOC (T) –

Actual
• = Review your source code and determine the actual LOC that were

deleted (D), modified (M), or reused (R). Enter these in the appro-
priate Actual row.

• = Calculate the LOC of added code as A = T – B + D – R
• = Calculate the total new and changed LOC as N = A + M.

Time in Phase • = Under Plan, enter estimated total time from the Size Estimating
Template and time by phase.

• = Under Actual, enter the total actual time in minutes spent in each
development phase (should be the sum of the Individual and Col-

161

laborative time).
• = Under Individual, enter the total actual time spent by any partner in-

dividually
• = Under Collaborative, enter the total actual time spent the partners

collaboratively
• = Under To Date %, enter the percentage of Total time (versus your

plan) in each phase.
Defects In-
jected

• = Under Actual, enter the number of defects injected in each phase
(should be the sum of the Individual and Collaborative defects).

• = Under Individual, enter the total defects time injected by phase when
a partner was working individually

• = Under Individual, enter the total defects time injected by phase when
the partners were working collaboratively

Defects Re-
moved

• = Under Actual, enter the number of defects removed in each phase
(should be the sum of the Individual and Collaborative defects).

• = Under Individual, enter the total defects time removed by phase
when a partner was working individually

• = Under Individual, enter the total defects time removed by phase
when the partners were working collaboratively

Defect Re-
moval
Efficiency

• = Under This Program, enter the actual efficiencies (defects/hour)
achieved for this program

• = Under Programs To Date, enter the actual efficiencies (defects/hour)
achieved for all programs to date

Defect Re-
moval
Leverage

• = Under This Program, enter the actual leverage (defects/hour of this
phase divided by defects/hour test) achieved for this program

• = Under Programs To Date, enter the actual leverage (defects/hour of
this phase divided by defects/hour test) achieved for all programs to
date

162

Table 46: CSP2.1 Process Script

 Phase
Number

Purpose To guide you in collaboratively developing module-level
programs

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty PROBE Size Estimating Template.
• = Historical estimate and actual size and time data.
• = Empty Time and Defect Recording Logs
• = Stop watch (optional)

1 Planning • = Produce or obtain a requirement statement
• = Analyze the requirements statement via the develop-

ment of a thorough set of use cases.
• = Use the PROBE method to estimate the total new and

changed LOC required
• = Use the PROBE method to estimate the required devel-

opment time of both partners
• = Complete a Task Planning Template.
• = Complete a Schedule Planning Template.
• = Enter the plan data in the Project Plan Summary form
• = Record the time spent in the Time Recording Log for

Planning
2 Development • = Perform a CRC card exercise in order to develop a pre-

liminary high-level design.
• = Design the program
• = Review the design and fix and log all defects found.
Perform the steps below iteratively:

• = Implement the design
• = Review the code and fix and log all defects found.
• = Compile the program and fix and log all defects found
• = Test the program and fix and log all defects found
• = Record the time spent in these activities in the Time

Recording Log in the appropriate phase
3 Postmortem • = Complete the Project Plan Summary form with actual

time, defect, and size data
 Exit Criteria • = A thoroughly tested program

• = Completed Project Plan Summary with estimated and
actual data

• = Completed PROBE worksheet.
• = Completed Design Review and Code Review Check-

lists.

163

• = Completed Process Improvement Proposal (PIP) form
• = Completed Defect and Time Recording Logs

164

Table 47: CSP2.1 Planning Script

Phase
Number

Purpose To guide the CSP planning process

 Entry criteria • = Problem description
• = Empty Project Plan Summary form
• = Empty PROBE Size Estimating, Task Planning, and

Schedule Planning Template
• = Historical estimated and actual size and resource data
• = Empty Time Recording Log

1 Program Re-
quirements

• = Produce or obtain a requirements statement for the pro-
gram

• = Ensure the requirements statement is clear and unambi-
guous

• = Analyze the program requirements by producing a
comprehensive set of Use Cases for the set of require-
ments. Complete the Use Case Flow-of-Events
template for each use case.

• = Resolve any questions
2 Size Estimate • = Produce a program conceptual design.

• = Use the PROBE method to estimate of the total new
and changed LOC required to develop this program

• = Estimate the base, added, deleted, modified, and reused
LOC

• = Complete the Size Estimating Template and the Project
Plan Summary

3 Resource Es-
timate

• = Based on the time required per LOC on previous pro-
grams, estimate of the time (for both partners) required
to develop this program

• = Make your best estimate of the total new and changed
LOC required to develop this program

4 Task and
Schedule
Planning

• = For projects requiring several days or more of work,
complete the Task Planning and Schedule Planning
Templates.

 Exit Criteria • = A documented requirements statement
• = Completed Use Case Flow-of-Events templates for

each use case.
• = The program conceptual design
• = Completed Size Estimating Template
• = For projects requiring several days or more of work,

complete the Task Planning and Schedule Planning

165

Templates
• = Estimated development time and program size data en-

tered in the Project Plan Summary
• = Actual time spent planning entered in the Time Re-

cording Log

166

Table 48: CSP2.1 Development Script

Phase
Number

Purpose To guide the development of small programs

 Entry criteria • = Requirements statement
• = Project Plan Summary with planning completed
• = For projects of several days’ duration or more, com-

pleted Task Planning and Schedule Planning
Templates

• = Time and Defect Recording Logs with planning com-
pleted

• = Coding Standard.
Note: The terms driver and non-driver are used below. The driver is the partner who
has control of the recording medium (ex: paper, computer keyboard) and is recording
the design or implementing code or fixing code. The non-driver is the other partner who
is actively observing the driver -- identifying defects, giving suggestions, etc. When a
partner is working alone, he or she is considered the driver, and no one is filling the
non-driver role.
1 Design • = Review the requirements and

• = Produce a design to meet the requirements by perform-
ing a CRC card exercise with partners and/or members
of the product team.

• = Include in your design a class diagram that lists the
properties and methods of each class and demonstrates
which other classes the class is dependent upon for ser-
vices/information.

• = The driver records the design in pre-determined for-
mat/on pre-determined medium.

• = The non-driver observes to ensure the design is being
recorded efficiently and effectively meets the require-
ments. The non-driver identifies defects and gives
suggestions for alternative designs.

• = Periodically, switch drivers.
• = Record design time in the Time Recording Log

2 Design Re-
view

• = Follow the Design Review Checklist and review the
design.

• = Fix all defects found.
• = Record defects in Defect Recording Log
• = Record Design Review time in Time Recording Log

3 Prepare Test
Cases

• = Prepare a preliminary set of test cases using the Test
Case Template. The test case should validate that all
requirements have been properly implemented and pos-

167

sible error conditions have been properly handled. (De-
tails that are not yet know can be completed after code
development.) Use the Unit Test Checklist to ensure
test coverage.

• = Fix any design defects surfaced by writing the test
cases. Record these defects in the Defect Recording
Log.

• = Record test development time as Testing time in the
Time Recording Log.

Perform Code, Compile and Test (below) iteratively. Choose an element of the design
and code it, compile it and test it before choosing another element of the design to im-
plement.
4 Code • = Implement the design following the Coding Standard.

• = The driver implements the design by typing code via
the keyboard.

• = The non-driver is observes to ensure the code properly
implements the design, and conforms to the Coding
Standard, identifying defects whenever necessary and
giving suggestions for alternative implementations.

• = Periodically, switch drivers.
• = Record any requirements or design defects in the De-

fect Recording Log
• = Record coding time in the Time Recording Log

5 Code Review • = Using the Code Review Checklist and review the code.
• = Fix all defects found.
• = Record defects in the Defect Recording Log
• = Record Code Review time in Time Recording Log.

6 Compile • = Compile the program until error-free.
• = Both partners identify and discuss all defects found and

the possible implications of these defects elsewhere in
the code.

• = The driver implements the code changes by fixing code
via the keyboard.

• = The non-driver observes to ensure the fix is properly
implemented, identifying erroneous fix implementa-
tions.

• = Periodically, switch drivers.
• = Record all defects found in Defect Recording Log
• = Record compile time (until program compiles error-

free) in the Time Recording Log
7 Test • = Develop additional test cases using the Test Case Tem-

plate. Complete any additional, new information on
previously developed test cases. Use the Unit Test
Checklist to ensure test coverage.

168

• = Add new test cases to an ever-enlarging set of regres-
sion tests.

• = Test until all tests cases (including all regression tests)
run without error

• = Record the results running test case on the Test Case
Template.

• = Both partners identify and discuss all defects found and
the possible implications of these defects elsewhere in
the code.

• = The driver implements the code changes by fixing code
via the keyboard.

• = The non-driver observes to ensure the fix is properly
implemented, identifying erroneous fix implementa-
tions.

• = Periodically, switch drivers.
• = Record defects in the Defect Recording Log
• = Record test time (until all test cases run error-free) in

the Time Recording Log
 Exit Criteria • = A thoroughly tested program that conforms to the Cod-

ing Standard
• = Completed Design Review and Code Review Check-

lists.
• = Completed Unit Test Checklists
• = Completed Defect Recording Log
• = Completed Time Recording Log

169

Table 49: CSP2.1 Postmortem Script

Phase
Number

Purpose To guide the CSP postmortem process

 Entry criteria • = Problem description and requirements statement
• = Project Plan Summary with planned program size and

planned development time
• = For projects of several days’ duration or more, com-

pleted Task Planning and Schedule Planning
Templates

• = Completed Design Review and Code Review Check-
lists

• = Completed Unit Test Checklists
• = Completed Time Recording Log
• = Completed Defect Recording Log
• = A tested and running program that conforms to the

Coding Standard
1 Defects In-

jected
• = Determine from the Defect Recording Log the number

of defects injected in each phase.
• = Enter this number under Defects Injected -- Actual on

the Project Plan Summary
2 Defects Re-

moved
• = Determine from the Defect Recording Log the number

of defects removed in each phase.
• = Enter this number under Defects Removed -- Actual on

the Project Plan Summary
3 Size • = Count the LOC in the completed program.

• = Determine the base, reused, deleted, modified, added,
total, total new and changed, and new reused LOC

• = Enter these data on the Project Plan Summary.
4 Time • = Review the completed Time Recording Log

• = Enter the total time spent in each phase under Actual
on the Project Plan Summary

 Exit Criteria • = A fully tested program that conforms to the Coding
Standard

• = Completed Use Case Flow-of-Events templates
• = Completed Project Plan Summary Form
• = Completed PIP form describing process problems, im-

provement suggestions, and what went well.
• = Completed Defect Recording Log and Time Recording

Log

170

APPENDIX C

USE CASE/FLOW OF EVENTS EXAMPLE

Program Specifications:

This program is a simulation of automobile traffic flow/traffic signals at a typical in-
tersection. Traffic flows in both directions on each of the cross streets. Cars form into
eight different queues at the intersection:

Abbreviation Traffic Flow
N from the north, headed straight south

NL from the north, headed east (left at intersection)
E from the east, headed straight west

EL from the east, headed south (left at intersection)
S from the south, headed straight north

SL from the south, headed west (left at intersection)
W from the west, headed straight east

WL from the west, headed north (left at intersection)
• = When a car enters the intersection, if the queue there is empty and the light is green,

they can clear the intersection. Else, they join the appropriate queue
• = When the system is initiated, the traffic signal allows traffic to flow from NL and

SL. Next it allows traffic to flow from N and S. Then, it allows traffic flow from
EL and WL. Lastly, it allows traffic to flow from E and W -- then starts again with
NL and SL and so forth.

• = When a signal light changes to green it can allows cars to pass through the intersec-
tion or get out of the queue.

171

UML Use Case Diagram:

Car

Traffic Controller
Change Light

<<Communicates>> Light Status
<<Uses>>

Car Queue

<<Uses>>

Clear Intersection

<<Communica tes>>

<<Us es>>

<<Uses>>

172

Use Case Flow of Events:

1 Flow of Events for the Clear Intersection Use Case
1.1 Preconditions
 The Initialize sub-flow of the Change Light use case, the Initialize sub-flow of

the Light Status use case, and the Initialize sub-flow of the Car Queue use case
must be executed before this use case begins.

1.2 Main Flow
 This use cases begins when a car enters the intersection. The car checks its

status (S-1). The use case ends when the car clears the intersections (S-4).
1.3 Sub-flows
 S-1: Check Status

Car checks status (S-2, S-3). If the light is green and the queue is empty, the car
clears the intersection (S-4). Otherwise, it joins a queue (S-5).

 S-2: Check Light
Execute the Report Status sub-flow of the Light Status use case. Send a mes-
sage indicating if the light is green or red.

 S-3: Check Queue
Execute the Report Status sub-flow of the Car Queue use case. Send a message
indicating if the queue is empty or not.

 S-4: Go
The car clears the intersection and the use case ends.

 S-5: Join a Queue
Send a message to the Add to Queue sub-flow of the Car Queue use case.

1.4 Alternative Flows
 None.

173

2 Flow of Events for the Change Light Use Case
2.1 Preconditions
 None.
2.2 Main Flow
 The traffic lights are initialized (S-1). The lights change (S-2) when the Traffic

Light Controller (actor) advances the lights.
2.3 Sub-flows
 S-1: Initialize

The traffic lights are initialized with all lights red except NL and SL. NL and
SL are green.

 S-2: Advance Lights
Lights are advanced in the following order:
When the system is initialized, the traffic signal allows traffic to flow from NL
and SL. Next, it allows traffic to flow from N and S. Then it allows traffic flow
from EL and WL. Lastly, it allows traffic to flow from E and W – then starts
again with NL and SL, and so forth.

When a light is changed (from green to red or from red to green), a message is
sent to the Update Status sub-flow of the Light Status use case.

2.4 Alternative Flows
 None.

3 Flow of Events for the Light Status Use Case
3.1 Preconditions
 None.
3.2 Main Flow
 Update (S-1) and report (S-2) the status of a traffic light color.
3.3 Sub-flows
 S-1: Update status.

Change the color of the lights. If the light is turned to green, send a message to
the Release from Queue subflow of the Car Queue use case.

 S-2: Report Status
Send a message indicating the color of the traffic light.

3.4 Alternative Flows
 None.

174

4 Flow of Events for the Car Queue Use Case
4.1 Preconditions
 None.
4.2 Main Flow
 This use case begins by initializing the queue (S-1). Cars may be added to the

queue (S-2) or released from the queue (S-3).
4.3 Sub-flows
 S-1: Initialize

The queue is initialized with zero cars.
 S-2: Add to queue

Receive a message from the Join a Queue sub-flow of the Clear Intersection use
case. Add car to queue.

 S-3: Release from queue
Release cars from queue. Send a message to the Go sub-flow of the Clear Inter-
section use case.

4.4 Alternative Flows
 None.

175

APPENDIX D

PAIR PROGRAMMING QUESTIONNAIRE

43 Respondents
DEMOGRAPHICS:

How long have you been a programmer in industry/research?
 7% Less than 1 year
17% 1 - 5 years
76% More than 5 years

How long have you been with your current employer?
30% Less than 1 year
45% 1- 5 years
25% More than 5 years

How long have you been pair programming?
46% Less than 1 year
23% 1 - 2 years
31% More than 2 years

WORKING ALONE?

When pair programming, do you believe the two programmers should EVER
work separately?

74% Yes
26% No

If yes,

When do you like to work separately (check all that apply)
 3% During design
16% When thinking about a tough problem
19% Tackling a new domain or language issue
50% During experimental prototyping
59% Partner's sick or busy
53% Other (please explain below)
COMMENT:

mailto:lwilliam@cs.utah.edu

176

• = Experiment with a new approach and prove it to yourself before
showing to partner

• = Doing simple, well-defined, rote programming (like wiring entry
fields to the GUI)

• = Thinking about deep-concentration, logical problems
• = Adding to test cases or refactoring test-only code
• = Architectural thoughts, for me, are best done alone, at night, in

bed. And pairing doesn’t work well when making documents.
Otherwise, pair all the time.

After working independently, when you get back together with your
partner what do you do with the work that was done independently?
(choose one)

22% Scrap and re-write
66% Review and incorporate it
 6% Incorporate (no review)
 6% Other (please comment)

What's the maximum amount of time a pair should be able to work
independently and still be considered "pair programming"?
21% 0-10% of the time
12% 10-20% of the time
21% 20-30% of the time
12% 30-40% of the time
15% 40-50% of the time
 7% 50-70% of the time
12% 70-80% of the time
0% 80-100% of the time

ROLE OF PERSON NOT TYPING

What's the role of the person not typing?

93% Perform continuous code review
86% Perform continuous design review
12% Work on next increment/project
42% Think about next increment/project
16% Look out the window/anything
26% Other (please comment below)

COMMENTS:

• = Stop the other person from deviating from the process/from the assigned
task

• = Provide strategic viewpoint
• = Reminders of method names or to test

177

• = Ask "what the heck is that??" / ask general questions about what the typ-
ist is doing

• = Perform continuous analysis review "Is that really what they're asking
for?”

• = Sometimes teach the other person (if you're more experienced in some-
thing)

• = The person not typing must be as active and engaged and the person typ-
ing

• = Peer-social effects: the act of having a (friendly) person nearby puts the
typing programmer into more of a ‘team’ mode – the typist is more likely
to behave as expected rather than as she/her personally desires

• = Take notes about thoughts, goals, and TO DO lists
• = Think about what is being put in and see how it fits into the design
• = Pull up useful documentation to help with current work.
• = Suggest alternatives

REVIEWS

When pair programming, do you do a design review?

67% Yes, we review the design while we create the design
 7% Yes, we review once we are done with the design
 5% No
21% Other (please comment below)

COMMENTS:

• = Sometimes review with technical stakeholders
• = CRC Cards with others
• = When someone feel particularly uncomfortable with a certain part.
• = "While we are creating and also at the end. This is the power of pair pro-

gramming."
• = Design reviews and code reviews are continuous. The design sits next to

the pair.
• = We try to hold design reviews off until refactoring.

If you do a design review, do you use a pre-defined design checklist?

 9% Yes
91% No

When pair programming, do you do a code review?

63% Yes, we review the code while we create the code
 5% Yes, we review together once we are done with the code, but before we
compile
 2% Yes, we review together once we are done with the code, but after we
compile

178

 2% Yes, we review with a larger development group
 9% No
19% Other (please comment below)

COMMENTS:

• = "I answer no because pair programming is, by its nature, code review as
it happens. It's not a separate process. It actually is better than a code
review."

• = "If you code together, you automatically have a very simple form of code
review."

• = Review with architect
• = “We regard reviews as a way to establish project standards. It’s less

Your code is not to spec, fix it” and more “Here’s a neat thing we did.
We think others should do the same thing.”

If you do a code review, do you use a pre-defined code review checklist?
21% Yes
79% No
MISC

Rank how strongly you agree with these statements.
(SA = Strongly agree; A = Agree; D = Disagree; SD = Strongly disagree)

These factors are critical for my success in pair programming:

 SA A D SD
The physical layout of our work-
space allows us to both see the
screen and to share the keyboard.

58% 38% 2% 2%

Management support. 35% 44% 16% 5%
My partner must buy in to the pair
programming concept. 65% 26% 9%

My partner must be able to practice
ego-less programming. 44% 40% 16%

Rank how strongly you agree with these statements.
(SA = Strongly agree; A = Agree; D = Disagree; SD = Strongly disagree)

 SA A D SD

When I pair program, I am
more confident in our solution
than I am when I program

69% 27% 4%

179

alone.

When I pair program, I enjoy
my job more than when I pro-
gram alone.

47% 47% 4% 2%

JUST DIDN'T WORK OUT

Was there ever someone with whom you simply couldn't pair program? If
so, please comment on why below.

• = Person took any comments as mistrust
• = Person with large ego/always thought he was right
• = Person always agrees (there needs to be some disagreement)
• = His/her way or the highway
• = Person with great insecurity or anxiety about their skills
• = Overly introverted
• = You need to be able to trust the other person's judgement

Are there physical or environmental conditions under which pair pro-
gramming did not work for you? If so, please comment.

• = Sitting too far away from own phone/email
• = Computer in the corner
• = Too much noise
• = Open cubicles make it difficult to talk without disturbing others
• = 21” monitors are very helpful; LCD projectors are even better
• = “Doesn’t really work using NetMeeting. It seems you really need to be

physically present.”
• = Remotely via dial-up

GENERAL COMMENTS
• = More productive, more demanding, more fun, you move much faster
• = "The best thing about Pair Programming for me is the continuous discus-

sion gave me training in formulating the thoughts I have about design
and programming, thereby helped me reflect over them and made me a
better designer/programmer.

• = You must be compatible with the other person
• = Will not work if neither partner is experienced or a believer in pair pro-

gramming
• = Not easily initially / takes time to incorporate
• = "I strongly feel pair programming is the primary reason our team has

been successful. It has given us a very high level of code quality (almost
to the point of 0 defects). The only code we have ever had errors in was

180

code that wasn't pair programmed . . . we should really question a situa-
tion where it isn't utilized."

• = "It is a powerful technique as there are 2 brains concentrating on the
same problem all the time. It forced one to concentrate fully on the prob-
lem at hand."

• = Important for the less experienced to be given tasks to do him/herself so
they can feel important

• = Works well for domain knowledge transfer from one person to another as
well as for transferring good programming practice

• = "It takes more effort because the pace is forced by the other person all the
time. Neither person feels they can slack off."

• = “My highest marks, and shiniest projects as an undergraduate were pro-
duced with partners. I used to call it the Batman and Robin model, since
I would work so much better regardless of the abilities of my partner. I
have partnered with people who were much less locally knowledgeable,
those who were pretty similar to me, and those who impressed me. In all
cases, we got more done than we would have expected to get done
alone.”

• = “In my 20+ years in the industry, I know one thing for CERTAIN, pair-
ing works! Better code, happier team, more productivity.”

• = “You have to try it to believe it – but when you do, it’s very hard to go
back.”

181

182

APPENDIX E

AUTOMATED REGRESSION TESTER

Sample Regression Tester Class Diagram:

testcases

testMean(fileName : string, expectedResults : double) : bool
testStdDeviation(fileName : s tring, expectedResults : double) : bool
test LinearRegression(fileNam e : s tring, expectedBe ta0 : fl oat, expectedBeta1 : float) : bool

suite

addTest(testname : string) : test
report() : void

test
results : int

set Results(functionCall : bool) : void

The testcases class contains a library of test functions. Each function is sent
parameters to force certain input conditions and to receive expected results. Each
function returns a boolean value indicating whether the actual test obtained the expected
results.

The test class has an integer attribute, which stores the status of the test case: Not

Run, Pass or Fail. The setResults method is used to set the value of this attribute.

The suite class contains a collection of test class instances; test classes instances are

added to the suite via the addTest method. The suite report method produces a sum-
mary report.

183

Below is a sample automated test case program.

int main() {

 Test* testcase;

 Suite s("Linear Regression");
 testcase = s.addTest("Normal Input");

 testcase.setResults(testLinearRegression("input1.txt", -22.55, 1.72));

 . . .

 s.report();

 return 0;

}

The Suite report() function will print the name of the test suite. Then it will go through
all the test cases that have been added in the test suite and whether or not it has been
passed. Lastly, it will print a summary. For example:

Suite: Linear Regression
====================

Test: Normal Input Passed
Test: Alpha Input Failed
Test: Three Numbers Not Run

====================

1 Passed
1 Failed
1 Not Run

184

APPENDIX F

BREAKDOWN OF NPV INCENTIVE INTO

LOWER-LEVEL METRICS

(Reprinted from [56], see next page for abbreviation definitions)
A: Test Strategy
B: Base Strategy

NPVI
Net Present Value Incentive

(NPVA – NPVB)/TPS = (PVI * NAVB + DCI*IB)/(NAVB+IB)

PVI
Present Value Incentive

(PVA – PVB)/NAVB = (eNAVA/(1+d)β – 1)
where β= TB(1-1/eDTA)

NAVA
Net Asset Value Advantage

log NAVA – log NAVB = log (eAVACB – MB/eOCA) – log NAVB

DCI
Development
Cost Incen-

tive
(IB – IA)/IB
= 1-1/eDCA

AVA
Asset Value Advantage

log CA – log CB = EEA + PCA + QFA + TVA

EEA
Early En-

try
Advantage
MEEA (1-
1/(1 + DTA))

DTA
Development

Time Ad-
vantage

log TB – log
TA

MEEA
Max(EEA)

PCA
Product

Cost
Advantage

TVA
Termina-

tion Value
Advantage

QFA Qual-
ity/

Functionality
Advantage

OCA
Operation
Cost Ad-
vantage

log MB –
log MA

DCA De-
velopment
Cost Ad-
vantage

log IB
– log IA

185

Development Time T
Development Cost I
(Future) Asset Value C
Operation Cost M
Product Risk d
Total Project Scale
(Estimated product revenue volume)

TPS

Product Cost Advantage
(Relative contribution of direct product sav-
ings to the asset value of the test strategy)

PCA

Quality/Function Advantage
(Relative contribution to the asset value of the
test strategy of the ability to control the qual-
ity and functionality of the end system)

QFA

Termination Value Advantage
(Relative contribution of termination value to
the asset value of the test strategy. Termina-
tion value includes the value of reusable
software salvaged upon project termination.)

TVA

186

REFERENCES

[1] P. B. Crosby, Quality is Free: The Art of Making Quality Certain. New York,

New York: McGraw-Hill Book Company, 1979.
[2] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineer-

ing. Englewood Cliffs, NJ: Prentice Hall, 1991.
[3] W. W. Gibbs, “Software's Chronic Crisis,” in Scientific American, pp. 86-95,

Sept. 1994.
[4] S. L. Pfleeger, Software Engineering: Theory and Practice. Upper Saddle

River, NJ: Prentice Hall, 1998.
[5] K. Beck, Extreme Programming Explained: Embrace Change. Reading, Massa-

chusetts: Addison-Wesley, 2000.
[6] Wiki, “Programming In Pairs,” in Portland Pattern Repository,

http://c2.com/cgi/wiki?ProgrammingInPairs., 1999.
[7] J. T. Nosek, “The Case for Collaborative Programming,” in Communications of

the ACM, pp. 105-108, March 1998.
[8] R. L. Baber, “Comparison of Electrical "Engineering" of Heaviside's Times and

Software "Engineering" of our Times,” IEEE Annals of the History of Comput-
ing, vol. 19, pp. 5-17, 1997.

[9] W. E. Deming, Out of the Crisis. Cambridge, MA: MIT Press, 1986.
[10] J. M. Juran and F. M. Gryna, Juran's Quality Control Handbook, Fourth ed.

New York, New York: McGraw-Hill Book Company, 1988.
[11] W. S. Humphrey, A Discipline for Software Engineering: Addison Wesley

Longman, Inc, 1995.
[12] P. Ferguson, W. S. Humphrey, S. Khajenoori, S. Macke, and A. Matvya, “Re-

sults of Applying the Personal Software Process,” in Computer, pp. 24-31, May
1997.

[13] A. Anderson, Beattie, Ralph, Beck, Kent et al., “Chrysler Goes to "Extremes",”
in Distributed Computing, pp. 24-28, Oct. 1998.

[14] Wiki, “Extreme Programming Roadmap,” in Portland Pattern Repository,
http://c2.com/cgi/wiki?ExtremeProgramming, 1999.

[15] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development
Process. Reading, Massachusetts: Addison-Wesley, 1999.

[16] G. Salomon, Distributed Cognitions: Psychological and educational considera-
tions. Cambridge: Cambridge University Press, 1993.

[17] N. V. Flor and E. L. Hutchins, “Analyzing Distributed Cognition in Software
Teams: A Case Study of Team Programming During Perfective Software Main-

187

tenance,” presented at Empirical Studies of Programmers: Fourth Workshop,
1991.

[18] J. O. Coplien, “A Development Process Generative Pattern Language,” in Pat-
tern Languages of Program Design, James O. Coplien and Douglas C. Schmidt,
Ed. Reading, MA: Addison-Wesley, 1995, pp. 183-237.

[19] L. L. Constantine, Constantine on Peopleware. Englewood Cliffs, NJ: Yourdon
Press, 1995.

[20] M. C. Paulk, B. Curtis, and M. B. Chrisis, “Capability Maturity Model for Soft-
ware Version 1.1,” Software Engineering Institute CMU/SEI-93-TR, February
24, 1993.

[21] W. Hayes and J. W. Over, “The Personal Software Process: An Empirical Study
of the Impact of PSP on Individual Engineers,” Software Engineering Institute,
Pittsburgh, PA CMU/SEI-97-TR-001, December 1997.

[22] B. Meyer, Object-Oriented Software Construction, Second Edition ed. Upper
Saddle River, New Jersey: Prentice Hall, 1997.

[23] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented
Software Engineering: A Use Case Driven Approach. Wokingham, England:
Addison-Wesley, 1992.

[24] D. Rosenberg and K. Scott, Use Case Driven Object Modeling with UML: A
Practical Approach. Reading, Massachusetts: Addison-Wesley, 1999.

[25] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering: Conquer-
ing Complex and Changing Systems. Upper Saddle River, NJ: Prentice Hall,
2000.

[26] T. Quatrani, Visual Modeling with Rational Rose and UML. Reading, Massa-
chusetts: Addison Wesley, 1998.

[27] D. Bellin and S. S. Simone, The CRC Card Book. Reading, Massachusetts: Ad-
dison-Wesley, 1997.

[28] A. Cockburn, “Using CRC Cards,” Humans and Technology TR.99.01, Salt
Lake City, UT , March 11, 1999.

[29] M. E. Fagan, “Advances in software inspections to reduce errors in program de-
velopment,” IBM Systems Journal, vol. 15, pp. 182-211, 1976.

[30] G. W. Russell, “Experience with Inspection in Ultralarge-Scale Developments,”
IEEE Software, pp. 25-31, Jan. 1991.

[31] E. F. Weller, “Lessons from Three Years of Inspection Data,” IEEE Software,
pp. 38-45, Sept. 1993.

[32] A. Cockburn, “Object-Oriented Analysis and Design, Part 2,” in C/C++ Users
Journal, June 1998.

[33] R. E. Jeffries, “Extreme Testing,” in Software Testing and Quality Engineering,
vol. 1, 1999, pp. 22-27.

[34] W. S. Humphrey, Introduction to the Team Software Process. Reading, Massa-
chusetts: Addison Wesley, 2000.

[35] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries, “Strengthening the
Case for Pair-Programming,” in IEEE Software, submitted for consideration.

188

[36] L. Williams and R. R. Kessler, “The Effects of "Pair-Pressure" and "Pair-
Learning" on Software Engineering Education,” presented at Conference on
Software Engineering Education and Training, Austin, TX, 2000.

[37] A. Cockburn and L. Williams, “The Costs and Benefits of Pair Programming,”
presented at eXtreme Programming and Flexible Processes in Software Engi-
neering -- XP2000, Cagliari, Sardinia, Italy, 2000.

[38] W. Bennis, Biederman, Patricia Ward, Organizing Genius: The Secrets of Crea-
tive Collaboration: Addison-Wesley Publishing Company, Inc., 1997.

[39] P. M. Johnson, “Reengineering Inspection: The Future of Formal Technical Re-
view,” in Communications of the ACM, vol. 41, 1998, pp. 49-52.

[40] W. S. Humphrey, Introduction to the Personal Software Process: Addison-
Wesley, 1997.

[41] G. M. Weinberg, The Psychology of Computer Programming Silver Anniversary
Edition. New York: Dorset House Publishing, 1998.

[42] B. W. Kernighan and R. Pike, The Practice of Programming. Reading, Massa-
chusetts: Addison-Wesley, 1999.

[43] C. Jones, Software Quality: Analysis and Guidelines for Success. Boston, MA:
International Thomson Computer Press, 1997.

[44] J. Lave and E. Wenger, Situated Learning: Legitimate peripheral participation.
New York, NY: Cambridge University Press, 1991.

[45] W. Cunningham and K. Auer, Extreme Programing Applied: Playing to Win!:
Addison Wesley, in preparation.

[46] F. P. J. Brooks, The Mythical Man-Moth: Addison-Wesley Publishing Company,
1975.

[47] A. H. Maslow, Motivation and Personality. New York, NY: Harper and Bros.,
1954.

[48] L. Williams and R. Kessler, “All I Ever Needed to Know About Pair Program-
ming I Learned in Kindergarten,” in Communications of the ACM, May 2000.

[49] T. DeMarco and T. Lister, Peopleware. New York: Dorset House Publishers,
1977.

[50] Wiki, “Pair Programming Facilities,” in Portland Pattern Repository,
http://c2.com/cgi/wiki?PairProgrammingFacilities, 1999.

[51] L. S. Levy, Taming the Tiger: Software Engineering and Software Economics.
New York: Springer-Verlag, 1987.

[52] S. Tockey, “A Missing Link in Software Engineering,” in IEEE Software, pp.
31-36, November/December 1997.

[53] C. F. Kemerer, “Progress, Obstacles, and Opportunities in Software Engineering
Economics,” in Communications of the ACM, vol. 41, 1998, pp. 63-66.

[54] S. A. Slaughter, D. E. Harter, and M. S. Drishnan, “Evaluating the Cost of Soft-
ware Quality,” in Communications of the ACM, vol. 41, 1998, pp. 67-73.

[55] B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: Pren-
tice-Hall, Inc., 1981.

[56] H. Erdogmus, “Comparative evaluation of software development strategies
based on Net Present Value,” presented at International Conference on Software

189

Engineering Workshop on Economics-Driven Software Engineering, California,
1999.

[57] S. A. Ross, Fundamentals of Corporate Finance: Irwin/McGraw-Hill, 1996.
[58] H. Erdogmus and J. Vandergraaf, “Quantitative Approaches for Assessing the

Value of COTS-centric Development,” presented at Sixth International Sympo-
sium on Software Metrics, Boca Raton, FL, 1999.

[59] N. Gross, M. Stepanek, O. Port, and J. Carey, “Software Hell,” in Business
Week, pp. 104-118, Dec. 6, 1999.

[60] J. Favaro and S. L. Pfleeger, “Making software development investment deci-
sions,” Software Engineering Notes, vol. 23, pp. 69-74, 1998.

[61] D. Webb, Humphrey, Watts, “Using the TSP on the TaskView Project,”
Crosstalk, February 1999.

[62] W. J. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowgray, AntiPat-
terns. New York: Wiley Computer Publishing, 1998.

[63] D. Keirsey, “The Keirsey Temperament Sorter II,” http://www.keirsey.com,
2000.

[64] D. Keirsey, Please Understand Me II. Del Mar, CA: Prometheus Nemesis Book
Company, 1998.

[65] C. Drew, Hardman, Michael L. and Hart, Ann Weaver, Designing and Conduct-
ing Research: Inquiry in Education and Social Science. Needham Heights,
Massachusetts: Simon and Schuster Company, 1996.

[66] A. H. Dutoit, Bruegge, Bernd, “Communication Metrics for Software Develop-
ment,” IEEE Transactions on Software Engineering, pp. 615-628, Aug. 1998.

	ABSTRACT
	LIST OF TABLES AND FIGURES
	ACKNOWLEDGMENTS
	INTRODUCTION
	Research Motivation
	Pair-Programming
	Software Process
	The Research Approach
	Research Contributions
	Summary of Remaining Chapters

	A SURVEY OF RELATED WORK
	The Personal Software Process (PSP)
	eXtreme Programming
	Distributed Cognition
	Organizational Pattern
	Other Studies

	COLLABORATIVE SOFTWARE PROCESS DEFINITION
	Process Rationale
	CSP Definition
	CSP Level 0: Collaborative Baseline
	CSP Level 0.0
	CSP Level 0.1

	CSP Level 1: Collaborative Quality Management
	CSP Level 1.0
	CSP Level 1.1

	CSP Level 2: Collaborative Project Management
	CSP Level 2.0
	CSP Level 2.1

	Differences Between CSP and PSP

	�QUALITATIVE RESULTS
	Why Collaborative Programming is Beneficial
	Pair-Pressure
	Pair-Think
	Pair-Relaying
	Pair-Reviews
	Debugging by Explaining
	Pair-Learning
	Pair-Learning in the Classroom
	Pair-Learning in the Workplace

	Team Building
	Project Risk
	Maslow’s Needs Hierarchy

	Success Factors for Effective Collaboration
	Pair-Jelling
	Project Ownership
	Mutual and Self-Respect
	Ego-Less Programming
	Workspace Layout
	Taking Breaks

	�QUANTITATIVE RESULTS
	An Economic Evaluation of the Collaborative Software Process
	Pair-Quality
	Pair-Time
	Net Present Value Analysis
	General Net Present Value Model
	Analyzing the Economic Advantage of CSP Using the Present Value of Costs (PVC) Model

	Economic Advantage of Cycle Time and Product Quality

	Engineer Satisfaction
	Secondary Indications
	Collaboration and Teamwork
	Design Quality
	Collaboration by Phase
	Analysis and design
	Code Implementation
	Testing
	Collaboration Among the High and Low Academic Performers

	Collaboration Perhaps Not for All
	Gender and Personality-Type Considerations

	SUMMARY AND CONTRIBUTIONS
	Studying and Understanding the Process
	The System the Engineer Works In
	Summary of Contributions

	FUTURE WORK
	
	
	
	
	
	Experiment Validity
	Purpose
	Purpose

	REFERENCES

